1
0
mirror of https://github.com/golang/go synced 2024-11-22 18:54:44 -07:00

crypto/internal/mlkem768: add EncapsulationKey type

Change-Id: I3feacb044caa15ac9bbfc11f5d90bebf8a505510
Reviewed-on: https://go-review.googlesource.com/c/go/+/621980
Auto-Submit: Filippo Valsorda <filippo@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Daniel McCarney <daniel@binaryparadox.net>
Reviewed-by: Russ Cox <rsc@golang.org>
This commit is contained in:
Filippo Valsorda 2024-10-21 14:30:46 +02:00 committed by Gopher Robot
parent 81fc3d2239
commit 1e733b638f
5 changed files with 90 additions and 78 deletions

View File

@ -73,6 +73,8 @@ type DecapsulationKey struct {
}
// Bytes returns the decapsulation key as a 64-byte seed in the "d || z" form.
//
// The decapsulation key must be kept secret.
func (dk *DecapsulationKey) Bytes() []byte {
var b [SeedSize]byte
copy(b[:], dk.d[:])
@ -82,17 +84,34 @@ func (dk *DecapsulationKey) Bytes() []byte {
// EncapsulationKey returns the public encapsulation key necessary to produce
// ciphertexts.
func (dk *DecapsulationKey) EncapsulationKey() []byte {
// The actual logic is in a separate function to outline this allocation.
b := make([]byte, 0, EncapsulationKeySize)
return dk.encapsulationKey(b)
func (dk *DecapsulationKey) EncapsulationKey() *EncapsulationKey {
return &EncapsulationKey{
ρ: dk.ρ,
h: dk.h,
encryptionKey: dk.encryptionKey,
}
}
func (dk *DecapsulationKey) encapsulationKey(b []byte) []byte {
for i := range dk.t {
b = polyByteEncode(b, dk.t[i])
// An EncapsulationKey is the public key used to produce ciphertexts to be
// decapsulated by the corresponding [DecapsulationKey].
type EncapsulationKey struct {
ρ [32]byte // sampleNTT seed for A
h [32]byte // H(ek)
encryptionKey
}
// Bytes returns the encapsulation key as a byte slice.
func (ek *EncapsulationKey) Bytes() []byte {
// The actual logic is in a separate function to outline this allocation.
b := make([]byte, 0, EncapsulationKeySize)
return ek.bytes(b)
}
func (ek *EncapsulationKey) bytes(b []byte) []byte {
for i := range ek.t {
b = polyByteEncode(b, ek.t[i])
}
b = append(b, dk.ρ[:]...)
b = append(b, ek.ρ[:]...)
return b
}
@ -123,9 +142,9 @@ func generateKey(dk *DecapsulationKey) *DecapsulationKey {
return kemKeyGen(dk, &d, &z)
}
// NewKeyFromSeed deterministically generates a decapsulation key from a 64-byte
// NewDecapsulationKey parses a decapsulation key from a 64-byte
// seed in the "d || z" form. The seed must be uniformly random.
func NewKeyFromSeed(seed []byte) (*DecapsulationKey, error) {
func NewDecapsulationKey(seed []byte) (*DecapsulationKey, error) {
// The actual logic is in a separate function to outline this allocation.
dk := &DecapsulationKey{}
return newKeyFromSeed(dk, seed)
@ -187,7 +206,7 @@ func kemKeyGen(dk *DecapsulationKey, d, z *[32]byte) *DecapsulationKey {
}
H := sha3.New256()
ek := dk.EncapsulationKey()
ek := dk.EncapsulationKey().Bytes()
H.Write(ek)
H.Sum(dk.h[:0])
@ -196,74 +215,75 @@ func kemKeyGen(dk *DecapsulationKey, d, z *[32]byte) *DecapsulationKey {
// Encapsulate generates a shared key and an associated ciphertext from an
// encapsulation key, drawing random bytes from crypto/rand.
// If the encapsulation key is not valid, Encapsulate returns an error.
//
// The shared key must be kept secret.
func Encapsulate(encapsulationKey []byte) (ciphertext, sharedKey []byte, err error) {
func (ek *EncapsulationKey) Encapsulate() (ciphertext, sharedKey []byte) {
// The actual logic is in a separate function to outline this allocation.
var cc [CiphertextSize]byte
return encapsulate(&cc, encapsulationKey)
return ek.encapsulate(&cc)
}
func encapsulate(cc *[CiphertextSize]byte, encapsulationKey []byte) (ciphertext, sharedKey []byte, err error) {
if len(encapsulationKey) != EncapsulationKeySize {
return nil, nil, errors.New("mlkem768: invalid encapsulation key length")
}
func (ek *EncapsulationKey) encapsulate(cc *[CiphertextSize]byte) (ciphertext, sharedKey []byte) {
var m [messageSize]byte
rand.Read(m[:])
// Note that the modulus check (step 2 of the encapsulation key check from
// FIPS 203, Section 7.2) is performed by polyByteDecode in parseEK.
return kemEncaps(cc, encapsulationKey, &m)
return kemEncaps(cc, ek, &m)
}
// kemEncaps generates a shared key and an associated ciphertext.
//
// It implements ML-KEM.Encaps_internal according to FIPS 203, Algorithm 17.
func kemEncaps(cc *[CiphertextSize]byte, ek []byte, m *[messageSize]byte) (c, K []byte, err error) {
func kemEncaps(cc *[CiphertextSize]byte, ek *EncapsulationKey, m *[messageSize]byte) (c, K []byte) {
if cc == nil {
cc = &[CiphertextSize]byte{}
}
H := sha3.Sum256(ek[:])
g := sha3.New512()
g.Write(m[:])
g.Write(H[:])
g.Write(ek.h[:])
G := g.Sum(nil)
K, r := G[:SharedKeySize], G[SharedKeySize:]
var ex encryptionKey
if err := parseEK(&ex, ek[:]); err != nil {
return nil, nil, err
}
c = pkeEncrypt(cc, &ex, m, r)
return c, K, nil
c = pkeEncrypt(cc, &ek.encryptionKey, m, r)
return c, K
}
// NewEncapsulationKey parses an encapsulation key from its encoded form.
// If the encapsulation key is not valid, NewEncapsulationKey returns an error.
func NewEncapsulationKey(encapsulationKey []byte) (*EncapsulationKey, error) {
// The actual logic is in a separate function to outline this allocation.
ek := &EncapsulationKey{}
return parseEK(ek, encapsulationKey)
}
// parseEK parses an encryption key from its encoded form.
//
// It implements the initial stages of K-PKE.Encrypt according to FIPS 203,
// Algorithm 14.
func parseEK(ex *encryptionKey, ekPKE []byte) error {
func parseEK(ek *EncapsulationKey, ekPKE []byte) (*EncapsulationKey, error) {
if len(ekPKE) != encryptionKeySize {
return errors.New("mlkem768: invalid encryption key length")
return nil, errors.New("mlkem768: invalid encapsulation key length")
}
for i := range ex.t {
ek.h = sha3.Sum256(ekPKE[:])
for i := range ek.t {
var err error
ex.t[i], err = polyByteDecode[nttElement](ekPKE[:encodingSize12])
ek.t[i], err = polyByteDecode[nttElement](ekPKE[:encodingSize12])
if err != nil {
return err
return nil, err
}
ekPKE = ekPKE[encodingSize12:]
}
ρ := ekPKE
copy(ek.ρ[:], ekPKE)
for i := byte(0); i < k; i++ {
for j := byte(0); j < k; j++ {
ex.a[i*k+j] = sampleNTT(ρ, j, i)
ek.a[i*k+j] = sampleNTT(ek.ρ[:], j, i)
}
}
return nil
return ek, nil
}
// pkeEncrypt encrypt a plaintext message.

View File

@ -20,10 +20,7 @@ func TestRoundTrip(t *testing.T) {
if err != nil {
t.Fatal(err)
}
c, Ke, err := Encapsulate(dk.EncapsulationKey())
if err != nil {
t.Fatal(err)
}
c, Ke := dk.EncapsulationKey().Encapsulate()
Kd, err := dk.Decapsulate(c)
if err != nil {
t.Fatal(err)
@ -36,17 +33,14 @@ func TestRoundTrip(t *testing.T) {
if err != nil {
t.Fatal(err)
}
if bytes.Equal(dk.EncapsulationKey(), dk1.EncapsulationKey()) {
if bytes.Equal(dk.EncapsulationKey().Bytes(), dk1.EncapsulationKey().Bytes()) {
t.Fail()
}
if bytes.Equal(dk.Bytes(), dk1.Bytes()) {
t.Fail()
}
c1, Ke1, err := Encapsulate(dk.EncapsulationKey())
if err != nil {
t.Fatal(err)
}
c1, Ke1 := dk.EncapsulationKey().Encapsulate()
if bytes.Equal(c, c1) {
t.Fail()
}
@ -61,25 +55,22 @@ func TestBadLengths(t *testing.T) {
t.Fatal(err)
}
ek := dk.EncapsulationKey()
ekBytes := dk.EncapsulationKey().Bytes()
c, _ := ek.Encapsulate()
for i := 0; i < len(ek)-1; i++ {
if _, _, err := Encapsulate(ek[:i]); err == nil {
for i := 0; i < len(ekBytes)-1; i++ {
if _, err := NewEncapsulationKey(ekBytes[:i]); err == nil {
t.Errorf("expected error for ek length %d", i)
}
}
ekLong := ek
ekLong := ekBytes
for i := 0; i < 100; i++ {
ekLong = append(ekLong, 0)
if _, _, err := Encapsulate(ekLong); err == nil {
if _, err := NewEncapsulationKey(ekLong); err == nil {
t.Errorf("expected error for ek length %d", len(ekLong))
}
}
c, _, err := Encapsulate(ek)
if err != nil {
t.Fatal(err)
}
for i := 0; i < len(c)-1; i++ {
if _, err := dk.Decapsulate(c[:i]); err == nil {
t.Errorf("expected error for c length %d", i)
@ -118,18 +109,15 @@ func TestAccumulated(t *testing.T) {
for i := 0; i < n; i++ {
s.Read(seed)
dk, err := NewKeyFromSeed(seed)
dk, err := NewDecapsulationKey(seed)
if err != nil {
t.Fatal(err)
}
ek := dk.EncapsulationKey()
o.Write(ek)
o.Write(ek.Bytes())
s.Read(msg[:])
ct, k, err := kemEncaps(nil, ek, &msg)
if err != nil {
t.Fatal(err)
}
ct, k := kemEncaps(nil, ek, &msg)
o.Write(ct)
o.Write(k)
@ -165,7 +153,7 @@ func BenchmarkKeyGen(b *testing.B) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
dk := kemKeyGen(&dk, &d, &z)
sink ^= dk.EncapsulationKey()[0]
sink ^= dk.EncapsulationKey().Bytes()[0]
}
}
@ -174,18 +162,19 @@ func BenchmarkEncaps(b *testing.B) {
rand.Read(seed)
var m [messageSize]byte
rand.Read(m[:])
dk, err := NewKeyFromSeed(seed)
dk, err := NewDecapsulationKey(seed)
if err != nil {
b.Fatal(err)
}
ek := dk.EncapsulationKey()
ekBytes := dk.EncapsulationKey().Bytes()
var c [CiphertextSize]byte
b.ResetTimer()
for i := 0; i < b.N; i++ {
c, K, err := kemEncaps(&c, ek, &m)
ek, err := NewEncapsulationKey(ekBytes)
if err != nil {
b.Fatal(err)
}
c, K := kemEncaps(&c, ek, &m)
sink ^= c[0] ^ K[0]
}
}
@ -196,10 +185,7 @@ func BenchmarkDecaps(b *testing.B) {
b.Fatal(err)
}
ek := dk.EncapsulationKey()
c, _, err := Encapsulate(ek)
if err != nil {
b.Fatal(err)
}
c, _ := ek.Encapsulate()
b.ResetTimer()
for i := 0; i < b.N; i++ {
K := kemDecaps(dk, (*[CiphertextSize]byte)(c))
@ -213,7 +199,8 @@ func BenchmarkRoundTrip(b *testing.B) {
b.Fatal(err)
}
ek := dk.EncapsulationKey()
c, _, err := Encapsulate(ek)
ekBytes := ek.Bytes()
c, _ := ek.Encapsulate()
if err != nil {
b.Fatal(err)
}
@ -223,7 +210,7 @@ func BenchmarkRoundTrip(b *testing.B) {
if err != nil {
b.Fatal(err)
}
ekS := dkS.EncapsulationKey()
ekS := dkS.EncapsulationKey().Bytes()
sink ^= ekS[0]
Ks, err := dk.Decapsulate(c)
@ -235,7 +222,11 @@ func BenchmarkRoundTrip(b *testing.B) {
})
b.Run("Bob", func(b *testing.B) {
for i := 0; i < b.N; i++ {
cS, Ks, err := Encapsulate(ek)
ek, err := NewEncapsulationKey(ekBytes)
if err != nil {
b.Fatal(err)
}
cS, Ks := ek.Encapsulate()
if err != nil {
b.Fatal(err)
}

View File

@ -164,7 +164,7 @@ func (c *Conn) makeClientHello() (*clientHelloMsg, *keySharePrivateKeys, *echCon
if _, err := io.ReadFull(config.rand(), seed); err != nil {
return nil, nil, nil, err
}
keyShareKeys.kyber, err = mlkem768.NewKeyFromSeed(seed)
keyShareKeys.kyber, err = mlkem768.NewDecapsulationKey(seed)
if err != nil {
return nil, nil, nil, err
}
@ -174,7 +174,7 @@ func (c *Conn) makeClientHello() (*clientHelloMsg, *keySharePrivateKeys, *echCon
// both, as allowed by draft-ietf-tls-hybrid-design-09, Section 3.2.
hello.keyShares = []keyShare{
{group: x25519Kyber768Draft00, data: append(keyShareKeys.ecdhe.PublicKey().Bytes(),
keyShareKeys.kyber.EncapsulationKey()...)},
keyShareKeys.kyber.EncapsulationKey().Bytes()...)},
{group: X25519, data: keyShareKeys.ecdhe.PublicKey().Bytes()},
}
} else {

View File

@ -63,19 +63,20 @@ func kyberDecapsulate(dk *mlkem768.DecapsulationKey, c []byte) ([]byte, error) {
if err != nil {
return nil, err
}
return kyberSharedSecret(K, c), nil
return kyberSharedSecret(c, K), nil
}
// kyberEncapsulate implements encapsulation according to Kyber Round 3.
func kyberEncapsulate(ek []byte) (c, ss []byte, err error) {
c, ss, err = mlkem768.Encapsulate(ek)
k, err := mlkem768.NewEncapsulationKey(ek)
if err != nil {
return nil, nil, err
}
return c, kyberSharedSecret(ss, c), nil
c, ss = k.Encapsulate()
return c, kyberSharedSecret(c, ss), nil
}
func kyberSharedSecret(K, c []byte) []byte {
func kyberSharedSecret(c, K []byte) []byte {
// Package mlkem768 implements ML-KEM, which compared to Kyber removed a
// final hashing step. Compute SHAKE-256(K || SHA3-256(c), 32) to match Kyber.
// See https://words.filippo.io/mlkem768/#bonus-track-using-a-ml-kem-implementation-as-kyber-v3.

View File

@ -124,7 +124,7 @@ func TestKyberEncapsulate(t *testing.T) {
if err != nil {
t.Fatal(err)
}
ct, ss, err := kyberEncapsulate(dk.EncapsulationKey())
ct, ss, err := kyberEncapsulate(dk.EncapsulationKey().Bytes())
if err != nil {
t.Fatal(err)
}