1
0
mirror of https://github.com/golang/go synced 2024-11-11 22:20:22 -07:00

cmd/compile/internal/ssa: delete unused files

Change-Id: I5d640091375feb873517368ce05f0ba46c35714f
GitHub-Last-Rev: cdaf6ba336
GitHub-Pull-Request: golang/go#44997
Reviewed-on: https://go-review.googlesource.com/c/go/+/301630
Reviewed-by: David Chase <drchase@google.com>
Trust: Keith Randall <khr@golang.org>
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
This commit is contained in:
cui 2021-03-14 18:55:59 +00:00 committed by Keith Randall
parent 13a0f7b502
commit 1824667259
3 changed files with 0 additions and 892 deletions

View File

@ -1,429 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import "fmt"
const (
rankLeaf rbrank = 1
rankZero rbrank = 0
)
type rbrank int8
// RBTint32 is a red-black tree with data stored at internal nodes,
// following Tarjan, Data Structures and Network Algorithms,
// pp 48-52, using explicit rank instead of red and black.
// Deletion is not yet implemented because it is not yet needed.
// Extra operations glb, lub, glbEq, lubEq are provided for
// use in sparse lookup algorithms.
type RBTint32 struct {
root *node32
// An extra-clever implementation will have special cases
// for small sets, but we are not extra-clever today.
}
func (t *RBTint32) String() string {
if t.root == nil {
return "[]"
}
return "[" + t.root.String() + "]"
}
func (t *node32) String() string {
s := ""
if t.left != nil {
s = t.left.String() + " "
}
s = s + fmt.Sprintf("k=%d,d=%v", t.key, t.data)
if t.right != nil {
s = s + " " + t.right.String()
}
return s
}
type node32 struct {
// Standard conventions hold for left = smaller, right = larger
left, right, parent *node32
data interface{}
key int32
rank rbrank // From Tarjan pp 48-49:
// If x is a node with a parent, then x.rank <= x.parent.rank <= x.rank+1.
// If x is a node with a grandparent, then x.rank < x.parent.parent.rank.
// If x is an "external [null] node", then x.rank = 0 && x.parent.rank = 1.
// Any node with one or more null children should have rank = 1.
}
// makeNode returns a new leaf node with the given key and nil data.
func (t *RBTint32) makeNode(key int32) *node32 {
return &node32{key: key, rank: rankLeaf}
}
// IsEmpty reports whether t is empty.
func (t *RBTint32) IsEmpty() bool {
return t.root == nil
}
// IsSingle reports whether t is a singleton (leaf).
func (t *RBTint32) IsSingle() bool {
return t.root != nil && t.root.isLeaf()
}
// VisitInOrder applies f to the key and data pairs in t,
// with keys ordered from smallest to largest.
func (t *RBTint32) VisitInOrder(f func(int32, interface{})) {
if t.root == nil {
return
}
t.root.visitInOrder(f)
}
func (n *node32) Data() interface{} {
if n == nil {
return nil
}
return n.data
}
func (n *node32) keyAndData() (k int32, d interface{}) {
if n == nil {
k = 0
d = nil
} else {
k = n.key
d = n.data
}
return
}
func (n *node32) Rank() rbrank {
if n == nil {
return 0
}
return n.rank
}
// Find returns the data associated with key in the tree, or
// nil if key is not in the tree.
func (t *RBTint32) Find(key int32) interface{} {
return t.root.find(key).Data()
}
// Insert adds key to the tree and associates key with data.
// If key was already in the tree, it updates the associated data.
// Insert returns the previous data associated with key,
// or nil if key was not present.
// Insert panics if data is nil.
func (t *RBTint32) Insert(key int32, data interface{}) interface{} {
if data == nil {
panic("Cannot insert nil data into tree")
}
n := t.root
var newroot *node32
if n == nil {
n = t.makeNode(key)
newroot = n
} else {
newroot, n = n.insert(key, t)
}
r := n.data
n.data = data
t.root = newroot
return r
}
// Min returns the minimum element of t and its associated data.
// If t is empty, then (0, nil) is returned.
func (t *RBTint32) Min() (k int32, d interface{}) {
return t.root.min().keyAndData()
}
// Max returns the maximum element of t and its associated data.
// If t is empty, then (0, nil) is returned.
func (t *RBTint32) Max() (k int32, d interface{}) {
return t.root.max().keyAndData()
}
// Glb returns the greatest-lower-bound-exclusive of x and its associated
// data. If x has no glb in the tree, then (0, nil) is returned.
func (t *RBTint32) Glb(x int32) (k int32, d interface{}) {
return t.root.glb(x, false).keyAndData()
}
// GlbEq returns the greatest-lower-bound-inclusive of x and its associated
// data. If x has no glbEQ in the tree, then (0, nil) is returned.
func (t *RBTint32) GlbEq(x int32) (k int32, d interface{}) {
return t.root.glb(x, true).keyAndData()
}
// Lub returns the least-upper-bound-exclusive of x and its associated
// data. If x has no lub in the tree, then (0, nil) is returned.
func (t *RBTint32) Lub(x int32) (k int32, d interface{}) {
return t.root.lub(x, false).keyAndData()
}
// LubEq returns the least-upper-bound-inclusive of x and its associated
// data. If x has no lubEq in the tree, then (0, nil) is returned.
func (t *RBTint32) LubEq(x int32) (k int32, d interface{}) {
return t.root.lub(x, true).keyAndData()
}
func (t *node32) isLeaf() bool {
return t.left == nil && t.right == nil
}
func (t *node32) visitInOrder(f func(int32, interface{})) {
if t.left != nil {
t.left.visitInOrder(f)
}
f(t.key, t.data)
if t.right != nil {
t.right.visitInOrder(f)
}
}
func (t *node32) maxChildRank() rbrank {
if t.left == nil {
if t.right == nil {
return rankZero
}
return t.right.rank
}
if t.right == nil {
return t.left.rank
}
if t.right.rank > t.left.rank {
return t.right.rank
}
return t.left.rank
}
func (t *node32) minChildRank() rbrank {
if t.left == nil || t.right == nil {
return rankZero
}
if t.right.rank < t.left.rank {
return t.right.rank
}
return t.left.rank
}
func (t *node32) find(key int32) *node32 {
for t != nil {
if key < t.key {
t = t.left
} else if key > t.key {
t = t.right
} else {
return t
}
}
return nil
}
func (t *node32) min() *node32 {
if t == nil {
return t
}
for t.left != nil {
t = t.left
}
return t
}
func (t *node32) max() *node32 {
if t == nil {
return t
}
for t.right != nil {
t = t.right
}
return t
}
func (t *node32) glb(key int32, allow_eq bool) *node32 {
var best *node32
for t != nil {
if key <= t.key {
if key == t.key && allow_eq {
return t
}
// t is too big, glb is to left.
t = t.left
} else {
// t is a lower bound, record it and seek a better one.
best = t
t = t.right
}
}
return best
}
func (t *node32) lub(key int32, allow_eq bool) *node32 {
var best *node32
for t != nil {
if key >= t.key {
if key == t.key && allow_eq {
return t
}
// t is too small, lub is to right.
t = t.right
} else {
// t is a upper bound, record it and seek a better one.
best = t
t = t.left
}
}
return best
}
func (t *node32) insert(x int32, w *RBTint32) (newroot, newnode *node32) {
// defaults
newroot = t
newnode = t
if x == t.key {
return
}
if x < t.key {
if t.left == nil {
n := w.makeNode(x)
n.parent = t
t.left = n
newnode = n
return
}
var new_l *node32
new_l, newnode = t.left.insert(x, w)
t.left = new_l
new_l.parent = t
newrank := 1 + new_l.maxChildRank()
if newrank > t.rank {
if newrank > 1+t.right.Rank() { // rotations required
if new_l.left.Rank() < new_l.right.Rank() {
// double rotation
t.left = new_l.rightToRoot()
}
newroot = t.leftToRoot()
return
} else {
t.rank = newrank
}
}
} else { // x > t.key
if t.right == nil {
n := w.makeNode(x)
n.parent = t
t.right = n
newnode = n
return
}
var new_r *node32
new_r, newnode = t.right.insert(x, w)
t.right = new_r
new_r.parent = t
newrank := 1 + new_r.maxChildRank()
if newrank > t.rank {
if newrank > 1+t.left.Rank() { // rotations required
if new_r.right.Rank() < new_r.left.Rank() {
// double rotation
t.right = new_r.leftToRoot()
}
newroot = t.rightToRoot()
return
} else {
t.rank = newrank
}
}
}
return
}
func (t *node32) rightToRoot() *node32 {
// this
// left right
// rl rr
//
// becomes
//
// right
// this rr
// left rl
//
right := t.right
rl := right.left
right.parent = t.parent
right.left = t
t.parent = right
// parent's child ptr fixed in caller
t.right = rl
if rl != nil {
rl.parent = t
}
return right
}
func (t *node32) leftToRoot() *node32 {
// this
// left right
// ll lr
//
// becomes
//
// left
// ll this
// lr right
//
left := t.left
lr := left.right
left.parent = t.parent
left.right = t
t.parent = left
// parent's child ptr fixed in caller
t.left = lr
if lr != nil {
lr.parent = t
}
return left
}
// next returns the successor of t in a left-to-right
// walk of the tree in which t is embedded.
func (t *node32) next() *node32 {
// If there is a right child, it is to the right
r := t.right
if r != nil {
return r.min()
}
// if t is p.left, then p, else repeat.
p := t.parent
for p != nil {
if p.left == t {
return p
}
t = p
p = t.parent
}
return nil
}
// prev returns the predecessor of t in a left-to-right
// walk of the tree in which t is embedded.
func (t *node32) prev() *node32 {
// If there is a left child, it is to the left
l := t.left
if l != nil {
return l.max()
}
// if t is p.right, then p, else repeat.
p := t.parent
for p != nil {
if p.right == t {
return p
}
t = p
p = t.parent
}
return nil
}

View File

@ -1,274 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"fmt"
"testing"
)
type sstring string
func (s sstring) String() string {
return string(s)
}
// wellFormed ensures that a red-black tree meets
// all of its invariants and returns a string identifying
// the first problem encountered. If there is no problem
// then the returned string is empty. The size is also
// returned to allow comparison of calculated tree size
// with expected.
func (t *RBTint32) wellFormed() (s string, i int) {
if t.root == nil {
s = ""
i = 0
return
}
return t.root.wellFormedSubtree(nil, -0x80000000, 0x7fffffff)
}
// wellFormedSubtree ensures that a red-black subtree meets
// all of its invariants and returns a string identifying
// the first problem encountered. If there is no problem
// then the returned string is empty. The size is also
// returned to allow comparison of calculated tree size
// with expected.
func (t *node32) wellFormedSubtree(parent *node32, min, max int32) (s string, i int) {
i = -1 // initialize to a failing value
s = "" // s is the reason for failure; empty means okay.
if t.parent != parent {
s = "t.parent != parent"
return
}
if min >= t.key {
s = "min >= t.key"
return
}
if max <= t.key {
s = "max <= t.key"
return
}
l := t.left
r := t.right
if l == nil && r == nil {
if t.rank != rankLeaf {
s = "leaf rank wrong"
return
}
}
if l != nil {
if t.rank < l.rank {
s = "t.rank < l.rank"
} else if t.rank > 1+l.rank {
s = "t.rank > 1+l.rank"
} else if t.rank <= l.maxChildRank() {
s = "t.rank <= l.maxChildRank()"
} else if t.key <= l.key {
s = "t.key <= l.key"
}
if s != "" {
return
}
} else {
if t.rank != 1 {
s = "t w/ left nil has rank != 1"
return
}
}
if r != nil {
if t.rank < r.rank {
s = "t.rank < r.rank"
} else if t.rank > 1+r.rank {
s = "t.rank > 1+r.rank"
} else if t.rank <= r.maxChildRank() {
s = "t.rank <= r.maxChildRank()"
} else if t.key >= r.key {
s = "t.key >= r.key"
}
if s != "" {
return
}
} else {
if t.rank != 1 {
s = "t w/ right nil has rank != 1"
return
}
}
ii := 1
if l != nil {
res, il := l.wellFormedSubtree(t, min, t.key)
if res != "" {
s = "L." + res
return
}
ii += il
}
if r != nil {
res, ir := r.wellFormedSubtree(t, t.key, max)
if res != "" {
s = "R." + res
return
}
ii += ir
}
i = ii
return
}
func (t *RBTint32) DebugString() string {
if t.root == nil {
return ""
}
return t.root.DebugString()
}
// DebugString prints the tree with nested information
// to allow an eyeball check on the tree balance.
func (t *node32) DebugString() string {
s := ""
if t.left != nil {
s += "["
s += t.left.DebugString()
s += "]"
}
s += fmt.Sprintf("%v=%v:%d", t.key, t.data, t.rank)
if t.right != nil {
s += "["
s += t.right.DebugString()
s += "]"
}
return s
}
func allRBT32Ops(te *testing.T, x []int32) {
t := &RBTint32{}
for i, d := range x {
x[i] = d + d // Double everything for glb/lub testing
}
// fmt.Printf("Inserting double of %v", x)
k := 0
min := int32(0x7fffffff)
max := int32(-0x80000000)
for _, d := range x {
if d < min {
min = d
}
if d > max {
max = d
}
t.Insert(d, sstring(fmt.Sprintf("%v", d)))
k++
s, i := t.wellFormed()
if i != k {
te.Errorf("Wrong tree size %v, expected %v for %v", i, k, t.DebugString())
}
if s != "" {
te.Errorf("Tree consistency problem at %v", s)
return
}
}
oops := false
for _, d := range x {
s := fmt.Sprintf("%v", d)
f := t.Find(d)
// data
if s != fmt.Sprintf("%v", f) {
te.Errorf("s(%v) != f(%v)", s, f)
oops = true
}
}
if !oops {
for _, d := range x {
s := fmt.Sprintf("%v", d)
kg, g := t.Glb(d + 1)
kge, ge := t.GlbEq(d)
kl, l := t.Lub(d - 1)
kle, le := t.LubEq(d)
// keys
if d != kg {
te.Errorf("d(%v) != kg(%v)", d, kg)
}
if d != kl {
te.Errorf("d(%v) != kl(%v)", d, kl)
}
if d != kge {
te.Errorf("d(%v) != kge(%v)", d, kge)
}
if d != kle {
te.Errorf("d(%v) != kle(%v)", d, kle)
}
// data
if s != fmt.Sprintf("%v", g) {
te.Errorf("s(%v) != g(%v)", s, g)
}
if s != fmt.Sprintf("%v", l) {
te.Errorf("s(%v) != l(%v)", s, l)
}
if s != fmt.Sprintf("%v", ge) {
te.Errorf("s(%v) != ge(%v)", s, ge)
}
if s != fmt.Sprintf("%v", le) {
te.Errorf("s(%v) != le(%v)", s, le)
}
}
for _, d := range x {
s := fmt.Sprintf("%v", d)
kge, ge := t.GlbEq(d + 1)
kle, le := t.LubEq(d - 1)
if d != kge {
te.Errorf("d(%v) != kge(%v)", d, kge)
}
if d != kle {
te.Errorf("d(%v) != kle(%v)", d, kle)
}
if s != fmt.Sprintf("%v", ge) {
te.Errorf("s(%v) != ge(%v)", s, ge)
}
if s != fmt.Sprintf("%v", le) {
te.Errorf("s(%v) != le(%v)", s, le)
}
}
kg, g := t.Glb(min)
kge, ge := t.GlbEq(min - 1)
kl, l := t.Lub(max)
kle, le := t.LubEq(max + 1)
fmin := t.Find(min - 1)
fmax := t.Find(min + 11)
if kg != 0 || kge != 0 || kl != 0 || kle != 0 {
te.Errorf("Got non-zero-key for missing query")
}
if g != nil || ge != nil || l != nil || le != nil || fmin != nil || fmax != nil {
te.Errorf("Got non-error-data for missing query")
}
}
}
func TestAllRBTreeOps(t *testing.T) {
allRBT32Ops(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
allRBT32Ops(t, []int32{22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 3, 2, 1, 25, 24, 23, 12, 11, 10, 9, 8, 7, 6, 5, 4})
allRBT32Ops(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
allRBT32Ops(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
allRBT32Ops(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
allRBT32Ops(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
}

View File

@ -1,189 +0,0 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import "fmt"
// A SparseTreeMap encodes a subset of nodes within a tree
// used for sparse-ancestor queries.
//
// Combined with a SparseTreeHelper, this supports an Insert
// to add a tree node to the set and a Find operation to locate
// the nearest tree ancestor of a given node such that the
// ancestor is also in the set.
//
// Given a set of blocks {B1, B2, B3} within the dominator tree, established
// by stm.Insert()ing B1, B2, B3, etc, a query at block B
// (performed with stm.Find(stm, B, adjust, helper))
// will return the member of the set that is the nearest strict
// ancestor of B within the dominator tree, or nil if none exists.
// The expected complexity of this operation is the log of the size
// the set, given certain assumptions about sparsity (the log complexity
// could be guaranteed with additional data structures whose constant-
// factor overhead has not yet been justified.)
//
// The adjust parameter allows positioning of the insertion
// and lookup points within a block -- one of
// AdjustBefore, AdjustWithin, AdjustAfter,
// where lookups at AdjustWithin can find insertions at
// AdjustBefore in the same block, and lookups at AdjustAfter
// can find insertions at either AdjustBefore or AdjustWithin
// in the same block. (Note that this assumes a gappy numbering
// such that exit number or exit number is separated from its
// nearest neighbor by at least 3).
//
// The Sparse Tree lookup algorithm is described by
// Paul F. Dietz. Maintaining order in a linked list. In
// Proceedings of the Fourteenth Annual ACM Symposium on
// Theory of Computing, pages 122127, May 1982.
// and by
// Ben Wegbreit. Faster retrieval from context trees.
// Communications of the ACM, 19(9):526529, September 1976.
type SparseTreeMap RBTint32
// A SparseTreeHelper contains indexing and allocation data
// structures common to a collection of SparseTreeMaps, as well
// as exposing some useful control-flow-related data to other
// packages, such as gc.
type SparseTreeHelper struct {
Sdom []SparseTreeNode // indexed by block.ID
Po []*Block // exported data; the blocks, in a post-order
Dom []*Block // exported data; the dominator of this block.
Ponums []int32 // exported data; Po[Ponums[b.ID]] == b; the index of b in Po
}
// NewSparseTreeHelper returns a SparseTreeHelper for use
// in the gc package, for example in phi-function placement.
func NewSparseTreeHelper(f *Func) *SparseTreeHelper {
dom := f.Idom()
ponums := make([]int32, f.NumBlocks())
po := postorderWithNumbering(f, ponums)
return makeSparseTreeHelper(newSparseTree(f, dom), dom, po, ponums)
}
func (h *SparseTreeHelper) NewTree() *SparseTreeMap {
return &SparseTreeMap{}
}
func makeSparseTreeHelper(sdom SparseTree, dom, po []*Block, ponums []int32) *SparseTreeHelper {
helper := &SparseTreeHelper{Sdom: []SparseTreeNode(sdom),
Dom: dom,
Po: po,
Ponums: ponums,
}
return helper
}
// A sparseTreeMapEntry contains the data stored in a binary search
// data structure indexed by (dominator tree walk) entry and exit numbers.
// Each entry is added twice, once keyed by entry-1/entry/entry+1 and
// once keyed by exit+1/exit/exit-1.
//
// Within a sparse tree, the two entries added bracket all their descendant
// entries within the tree; the first insertion is keyed by entry number,
// which comes before all the entry and exit numbers of descendants, and
// the second insertion is keyed by exit number, which comes after all the
// entry and exit numbers of the descendants.
type sparseTreeMapEntry struct {
index *SparseTreeNode // references the entry and exit numbers for a block in the sparse tree
block *Block // TODO: store this in a separate index.
data interface{}
sparseParent *sparseTreeMapEntry // references the nearest ancestor of this block in the sparse tree.
adjust int32 // at what adjustment was this node entered into the sparse tree? The same block may be entered more than once, but at different adjustments.
}
// Insert creates a definition within b with data x.
// adjust indicates where in the block should be inserted:
// AdjustBefore means defined at a phi function (visible Within or After in the same block)
// AdjustWithin means defined within the block (visible After in the same block)
// AdjustAfter means after the block (visible within child blocks)
func (m *SparseTreeMap) Insert(b *Block, adjust int32, x interface{}, helper *SparseTreeHelper) {
rbtree := (*RBTint32)(m)
blockIndex := &helper.Sdom[b.ID]
if blockIndex.entry == 0 {
// assert unreachable
return
}
// sp will be the sparse parent in this sparse tree (nearest ancestor in the larger tree that is also in this sparse tree)
sp := m.findEntry(b, adjust, helper)
entry := &sparseTreeMapEntry{index: blockIndex, block: b, data: x, sparseParent: sp, adjust: adjust}
right := blockIndex.exit - adjust
_ = rbtree.Insert(right, entry)
left := blockIndex.entry + adjust
_ = rbtree.Insert(left, entry)
// This newly inserted block may now be the sparse parent of some existing nodes (the new sparse children of this block)
// Iterate over nodes bracketed by this new node to correct their parent, but not over the proper sparse descendants of those nodes.
_, d := rbtree.Lub(left) // Lub (not EQ) of left is either right or a sparse child
for tme := d.(*sparseTreeMapEntry); tme != entry; tme = d.(*sparseTreeMapEntry) {
tme.sparseParent = entry
// all descendants of tme are unchanged;
// next sparse sibling (or right-bracketing sparse parent == entry) is first node after tme.index.exit - tme.adjust
_, d = rbtree.Lub(tme.index.exit - tme.adjust)
}
}
// Find returns the definition visible from block b, or nil if none can be found.
// Adjust indicates where the block should be searched.
// AdjustBefore searches before the phi functions of b.
// AdjustWithin searches starting at the phi functions of b.
// AdjustAfter searches starting at the exit from the block, including normal within-block definitions.
//
// Note that Finds are properly nested with Inserts:
// m.Insert(b, a) followed by m.Find(b, a) will not return the result of the insert,
// but m.Insert(b, AdjustBefore) followed by m.Find(b, AdjustWithin) will.
//
// Another way to think of this is that Find searches for inputs, Insert defines outputs.
func (m *SparseTreeMap) Find(b *Block, adjust int32, helper *SparseTreeHelper) interface{} {
v := m.findEntry(b, adjust, helper)
if v == nil {
return nil
}
return v.data
}
func (m *SparseTreeMap) findEntry(b *Block, adjust int32, helper *SparseTreeHelper) *sparseTreeMapEntry {
rbtree := (*RBTint32)(m)
if rbtree == nil {
return nil
}
blockIndex := &helper.Sdom[b.ID]
// The Glb (not EQ) of this probe is either the entry-indexed end of a sparse parent
// or the exit-indexed end of a sparse sibling
_, v := rbtree.Glb(blockIndex.entry + adjust)
if v == nil {
return nil
}
otherEntry := v.(*sparseTreeMapEntry)
if otherEntry.index.exit >= blockIndex.exit { // otherEntry exit after blockIndex exit; therefore, brackets
return otherEntry
}
// otherEntry is a sparse Sibling, and shares the same sparse parent (nearest ancestor within larger tree)
sp := otherEntry.sparseParent
if sp != nil {
if sp.index.exit < blockIndex.exit { // no ancestor found
return nil
}
return sp
}
return nil
}
func (m *SparseTreeMap) String() string {
tree := (*RBTint32)(m)
return tree.String()
}
func (e *sparseTreeMapEntry) String() string {
if e == nil {
return "nil"
}
return fmt.Sprintf("(index=%v, block=%v, data=%v)->%v", e.index, e.block, e.data, e.sparseParent)
}