mirror of
https://github.com/golang/go
synced 2024-11-11 22:20:22 -07:00
cmd/compile/internal/ssa: delete unused files
Change-Id: I5d640091375feb873517368ce05f0ba46c35714f
GitHub-Last-Rev: cdaf6ba336
GitHub-Pull-Request: golang/go#44997
Reviewed-on: https://go-review.googlesource.com/c/go/+/301630
Reviewed-by: David Chase <drchase@google.com>
Trust: Keith Randall <khr@golang.org>
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
This commit is contained in:
parent
13a0f7b502
commit
1824667259
@ -1,429 +0,0 @@
|
||||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
import "fmt"
|
||||
|
||||
const (
|
||||
rankLeaf rbrank = 1
|
||||
rankZero rbrank = 0
|
||||
)
|
||||
|
||||
type rbrank int8
|
||||
|
||||
// RBTint32 is a red-black tree with data stored at internal nodes,
|
||||
// following Tarjan, Data Structures and Network Algorithms,
|
||||
// pp 48-52, using explicit rank instead of red and black.
|
||||
// Deletion is not yet implemented because it is not yet needed.
|
||||
// Extra operations glb, lub, glbEq, lubEq are provided for
|
||||
// use in sparse lookup algorithms.
|
||||
type RBTint32 struct {
|
||||
root *node32
|
||||
// An extra-clever implementation will have special cases
|
||||
// for small sets, but we are not extra-clever today.
|
||||
}
|
||||
|
||||
func (t *RBTint32) String() string {
|
||||
if t.root == nil {
|
||||
return "[]"
|
||||
}
|
||||
return "[" + t.root.String() + "]"
|
||||
}
|
||||
|
||||
func (t *node32) String() string {
|
||||
s := ""
|
||||
if t.left != nil {
|
||||
s = t.left.String() + " "
|
||||
}
|
||||
s = s + fmt.Sprintf("k=%d,d=%v", t.key, t.data)
|
||||
if t.right != nil {
|
||||
s = s + " " + t.right.String()
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
type node32 struct {
|
||||
// Standard conventions hold for left = smaller, right = larger
|
||||
left, right, parent *node32
|
||||
data interface{}
|
||||
key int32
|
||||
rank rbrank // From Tarjan pp 48-49:
|
||||
// If x is a node with a parent, then x.rank <= x.parent.rank <= x.rank+1.
|
||||
// If x is a node with a grandparent, then x.rank < x.parent.parent.rank.
|
||||
// If x is an "external [null] node", then x.rank = 0 && x.parent.rank = 1.
|
||||
// Any node with one or more null children should have rank = 1.
|
||||
}
|
||||
|
||||
// makeNode returns a new leaf node with the given key and nil data.
|
||||
func (t *RBTint32) makeNode(key int32) *node32 {
|
||||
return &node32{key: key, rank: rankLeaf}
|
||||
}
|
||||
|
||||
// IsEmpty reports whether t is empty.
|
||||
func (t *RBTint32) IsEmpty() bool {
|
||||
return t.root == nil
|
||||
}
|
||||
|
||||
// IsSingle reports whether t is a singleton (leaf).
|
||||
func (t *RBTint32) IsSingle() bool {
|
||||
return t.root != nil && t.root.isLeaf()
|
||||
}
|
||||
|
||||
// VisitInOrder applies f to the key and data pairs in t,
|
||||
// with keys ordered from smallest to largest.
|
||||
func (t *RBTint32) VisitInOrder(f func(int32, interface{})) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.visitInOrder(f)
|
||||
}
|
||||
|
||||
func (n *node32) Data() interface{} {
|
||||
if n == nil {
|
||||
return nil
|
||||
}
|
||||
return n.data
|
||||
}
|
||||
|
||||
func (n *node32) keyAndData() (k int32, d interface{}) {
|
||||
if n == nil {
|
||||
k = 0
|
||||
d = nil
|
||||
} else {
|
||||
k = n.key
|
||||
d = n.data
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func (n *node32) Rank() rbrank {
|
||||
if n == nil {
|
||||
return 0
|
||||
}
|
||||
return n.rank
|
||||
}
|
||||
|
||||
// Find returns the data associated with key in the tree, or
|
||||
// nil if key is not in the tree.
|
||||
func (t *RBTint32) Find(key int32) interface{} {
|
||||
return t.root.find(key).Data()
|
||||
}
|
||||
|
||||
// Insert adds key to the tree and associates key with data.
|
||||
// If key was already in the tree, it updates the associated data.
|
||||
// Insert returns the previous data associated with key,
|
||||
// or nil if key was not present.
|
||||
// Insert panics if data is nil.
|
||||
func (t *RBTint32) Insert(key int32, data interface{}) interface{} {
|
||||
if data == nil {
|
||||
panic("Cannot insert nil data into tree")
|
||||
}
|
||||
n := t.root
|
||||
var newroot *node32
|
||||
if n == nil {
|
||||
n = t.makeNode(key)
|
||||
newroot = n
|
||||
} else {
|
||||
newroot, n = n.insert(key, t)
|
||||
}
|
||||
r := n.data
|
||||
n.data = data
|
||||
t.root = newroot
|
||||
return r
|
||||
}
|
||||
|
||||
// Min returns the minimum element of t and its associated data.
|
||||
// If t is empty, then (0, nil) is returned.
|
||||
func (t *RBTint32) Min() (k int32, d interface{}) {
|
||||
return t.root.min().keyAndData()
|
||||
}
|
||||
|
||||
// Max returns the maximum element of t and its associated data.
|
||||
// If t is empty, then (0, nil) is returned.
|
||||
func (t *RBTint32) Max() (k int32, d interface{}) {
|
||||
return t.root.max().keyAndData()
|
||||
}
|
||||
|
||||
// Glb returns the greatest-lower-bound-exclusive of x and its associated
|
||||
// data. If x has no glb in the tree, then (0, nil) is returned.
|
||||
func (t *RBTint32) Glb(x int32) (k int32, d interface{}) {
|
||||
return t.root.glb(x, false).keyAndData()
|
||||
}
|
||||
|
||||
// GlbEq returns the greatest-lower-bound-inclusive of x and its associated
|
||||
// data. If x has no glbEQ in the tree, then (0, nil) is returned.
|
||||
func (t *RBTint32) GlbEq(x int32) (k int32, d interface{}) {
|
||||
return t.root.glb(x, true).keyAndData()
|
||||
}
|
||||
|
||||
// Lub returns the least-upper-bound-exclusive of x and its associated
|
||||
// data. If x has no lub in the tree, then (0, nil) is returned.
|
||||
func (t *RBTint32) Lub(x int32) (k int32, d interface{}) {
|
||||
return t.root.lub(x, false).keyAndData()
|
||||
}
|
||||
|
||||
// LubEq returns the least-upper-bound-inclusive of x and its associated
|
||||
// data. If x has no lubEq in the tree, then (0, nil) is returned.
|
||||
func (t *RBTint32) LubEq(x int32) (k int32, d interface{}) {
|
||||
return t.root.lub(x, true).keyAndData()
|
||||
}
|
||||
|
||||
func (t *node32) isLeaf() bool {
|
||||
return t.left == nil && t.right == nil
|
||||
}
|
||||
|
||||
func (t *node32) visitInOrder(f func(int32, interface{})) {
|
||||
if t.left != nil {
|
||||
t.left.visitInOrder(f)
|
||||
}
|
||||
f(t.key, t.data)
|
||||
if t.right != nil {
|
||||
t.right.visitInOrder(f)
|
||||
}
|
||||
}
|
||||
|
||||
func (t *node32) maxChildRank() rbrank {
|
||||
if t.left == nil {
|
||||
if t.right == nil {
|
||||
return rankZero
|
||||
}
|
||||
return t.right.rank
|
||||
}
|
||||
if t.right == nil {
|
||||
return t.left.rank
|
||||
}
|
||||
if t.right.rank > t.left.rank {
|
||||
return t.right.rank
|
||||
}
|
||||
return t.left.rank
|
||||
}
|
||||
|
||||
func (t *node32) minChildRank() rbrank {
|
||||
if t.left == nil || t.right == nil {
|
||||
return rankZero
|
||||
}
|
||||
if t.right.rank < t.left.rank {
|
||||
return t.right.rank
|
||||
}
|
||||
return t.left.rank
|
||||
}
|
||||
|
||||
func (t *node32) find(key int32) *node32 {
|
||||
for t != nil {
|
||||
if key < t.key {
|
||||
t = t.left
|
||||
} else if key > t.key {
|
||||
t = t.right
|
||||
} else {
|
||||
return t
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (t *node32) min() *node32 {
|
||||
if t == nil {
|
||||
return t
|
||||
}
|
||||
for t.left != nil {
|
||||
t = t.left
|
||||
}
|
||||
return t
|
||||
}
|
||||
|
||||
func (t *node32) max() *node32 {
|
||||
if t == nil {
|
||||
return t
|
||||
}
|
||||
for t.right != nil {
|
||||
t = t.right
|
||||
}
|
||||
return t
|
||||
}
|
||||
|
||||
func (t *node32) glb(key int32, allow_eq bool) *node32 {
|
||||
var best *node32
|
||||
for t != nil {
|
||||
if key <= t.key {
|
||||
if key == t.key && allow_eq {
|
||||
return t
|
||||
}
|
||||
// t is too big, glb is to left.
|
||||
t = t.left
|
||||
} else {
|
||||
// t is a lower bound, record it and seek a better one.
|
||||
best = t
|
||||
t = t.right
|
||||
}
|
||||
}
|
||||
return best
|
||||
}
|
||||
|
||||
func (t *node32) lub(key int32, allow_eq bool) *node32 {
|
||||
var best *node32
|
||||
for t != nil {
|
||||
if key >= t.key {
|
||||
if key == t.key && allow_eq {
|
||||
return t
|
||||
}
|
||||
// t is too small, lub is to right.
|
||||
t = t.right
|
||||
} else {
|
||||
// t is a upper bound, record it and seek a better one.
|
||||
best = t
|
||||
t = t.left
|
||||
}
|
||||
}
|
||||
return best
|
||||
}
|
||||
|
||||
func (t *node32) insert(x int32, w *RBTint32) (newroot, newnode *node32) {
|
||||
// defaults
|
||||
newroot = t
|
||||
newnode = t
|
||||
if x == t.key {
|
||||
return
|
||||
}
|
||||
if x < t.key {
|
||||
if t.left == nil {
|
||||
n := w.makeNode(x)
|
||||
n.parent = t
|
||||
t.left = n
|
||||
newnode = n
|
||||
return
|
||||
}
|
||||
var new_l *node32
|
||||
new_l, newnode = t.left.insert(x, w)
|
||||
t.left = new_l
|
||||
new_l.parent = t
|
||||
newrank := 1 + new_l.maxChildRank()
|
||||
if newrank > t.rank {
|
||||
if newrank > 1+t.right.Rank() { // rotations required
|
||||
if new_l.left.Rank() < new_l.right.Rank() {
|
||||
// double rotation
|
||||
t.left = new_l.rightToRoot()
|
||||
}
|
||||
newroot = t.leftToRoot()
|
||||
return
|
||||
} else {
|
||||
t.rank = newrank
|
||||
}
|
||||
}
|
||||
} else { // x > t.key
|
||||
if t.right == nil {
|
||||
n := w.makeNode(x)
|
||||
n.parent = t
|
||||
t.right = n
|
||||
newnode = n
|
||||
return
|
||||
}
|
||||
var new_r *node32
|
||||
new_r, newnode = t.right.insert(x, w)
|
||||
t.right = new_r
|
||||
new_r.parent = t
|
||||
newrank := 1 + new_r.maxChildRank()
|
||||
if newrank > t.rank {
|
||||
if newrank > 1+t.left.Rank() { // rotations required
|
||||
if new_r.right.Rank() < new_r.left.Rank() {
|
||||
// double rotation
|
||||
t.right = new_r.leftToRoot()
|
||||
}
|
||||
newroot = t.rightToRoot()
|
||||
return
|
||||
} else {
|
||||
t.rank = newrank
|
||||
}
|
||||
}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
func (t *node32) rightToRoot() *node32 {
|
||||
// this
|
||||
// left right
|
||||
// rl rr
|
||||
//
|
||||
// becomes
|
||||
//
|
||||
// right
|
||||
// this rr
|
||||
// left rl
|
||||
//
|
||||
right := t.right
|
||||
rl := right.left
|
||||
right.parent = t.parent
|
||||
right.left = t
|
||||
t.parent = right
|
||||
// parent's child ptr fixed in caller
|
||||
t.right = rl
|
||||
if rl != nil {
|
||||
rl.parent = t
|
||||
}
|
||||
return right
|
||||
}
|
||||
|
||||
func (t *node32) leftToRoot() *node32 {
|
||||
// this
|
||||
// left right
|
||||
// ll lr
|
||||
//
|
||||
// becomes
|
||||
//
|
||||
// left
|
||||
// ll this
|
||||
// lr right
|
||||
//
|
||||
left := t.left
|
||||
lr := left.right
|
||||
left.parent = t.parent
|
||||
left.right = t
|
||||
t.parent = left
|
||||
// parent's child ptr fixed in caller
|
||||
t.left = lr
|
||||
if lr != nil {
|
||||
lr.parent = t
|
||||
}
|
||||
return left
|
||||
}
|
||||
|
||||
// next returns the successor of t in a left-to-right
|
||||
// walk of the tree in which t is embedded.
|
||||
func (t *node32) next() *node32 {
|
||||
// If there is a right child, it is to the right
|
||||
r := t.right
|
||||
if r != nil {
|
||||
return r.min()
|
||||
}
|
||||
// if t is p.left, then p, else repeat.
|
||||
p := t.parent
|
||||
for p != nil {
|
||||
if p.left == t {
|
||||
return p
|
||||
}
|
||||
t = p
|
||||
p = t.parent
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// prev returns the predecessor of t in a left-to-right
|
||||
// walk of the tree in which t is embedded.
|
||||
func (t *node32) prev() *node32 {
|
||||
// If there is a left child, it is to the left
|
||||
l := t.left
|
||||
if l != nil {
|
||||
return l.max()
|
||||
}
|
||||
// if t is p.right, then p, else repeat.
|
||||
p := t.parent
|
||||
for p != nil {
|
||||
if p.right == t {
|
||||
return p
|
||||
}
|
||||
t = p
|
||||
p = t.parent
|
||||
}
|
||||
return nil
|
||||
}
|
@ -1,274 +0,0 @@
|
||||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
type sstring string
|
||||
|
||||
func (s sstring) String() string {
|
||||
return string(s)
|
||||
}
|
||||
|
||||
// wellFormed ensures that a red-black tree meets
|
||||
// all of its invariants and returns a string identifying
|
||||
// the first problem encountered. If there is no problem
|
||||
// then the returned string is empty. The size is also
|
||||
// returned to allow comparison of calculated tree size
|
||||
// with expected.
|
||||
func (t *RBTint32) wellFormed() (s string, i int) {
|
||||
if t.root == nil {
|
||||
s = ""
|
||||
i = 0
|
||||
return
|
||||
}
|
||||
return t.root.wellFormedSubtree(nil, -0x80000000, 0x7fffffff)
|
||||
}
|
||||
|
||||
// wellFormedSubtree ensures that a red-black subtree meets
|
||||
// all of its invariants and returns a string identifying
|
||||
// the first problem encountered. If there is no problem
|
||||
// then the returned string is empty. The size is also
|
||||
// returned to allow comparison of calculated tree size
|
||||
// with expected.
|
||||
func (t *node32) wellFormedSubtree(parent *node32, min, max int32) (s string, i int) {
|
||||
i = -1 // initialize to a failing value
|
||||
s = "" // s is the reason for failure; empty means okay.
|
||||
|
||||
if t.parent != parent {
|
||||
s = "t.parent != parent"
|
||||
return
|
||||
}
|
||||
|
||||
if min >= t.key {
|
||||
s = "min >= t.key"
|
||||
return
|
||||
}
|
||||
|
||||
if max <= t.key {
|
||||
s = "max <= t.key"
|
||||
return
|
||||
}
|
||||
|
||||
l := t.left
|
||||
r := t.right
|
||||
if l == nil && r == nil {
|
||||
if t.rank != rankLeaf {
|
||||
s = "leaf rank wrong"
|
||||
return
|
||||
}
|
||||
}
|
||||
if l != nil {
|
||||
if t.rank < l.rank {
|
||||
s = "t.rank < l.rank"
|
||||
} else if t.rank > 1+l.rank {
|
||||
s = "t.rank > 1+l.rank"
|
||||
} else if t.rank <= l.maxChildRank() {
|
||||
s = "t.rank <= l.maxChildRank()"
|
||||
} else if t.key <= l.key {
|
||||
s = "t.key <= l.key"
|
||||
}
|
||||
if s != "" {
|
||||
return
|
||||
}
|
||||
} else {
|
||||
if t.rank != 1 {
|
||||
s = "t w/ left nil has rank != 1"
|
||||
return
|
||||
}
|
||||
}
|
||||
if r != nil {
|
||||
if t.rank < r.rank {
|
||||
s = "t.rank < r.rank"
|
||||
} else if t.rank > 1+r.rank {
|
||||
s = "t.rank > 1+r.rank"
|
||||
} else if t.rank <= r.maxChildRank() {
|
||||
s = "t.rank <= r.maxChildRank()"
|
||||
} else if t.key >= r.key {
|
||||
s = "t.key >= r.key"
|
||||
}
|
||||
if s != "" {
|
||||
return
|
||||
}
|
||||
} else {
|
||||
if t.rank != 1 {
|
||||
s = "t w/ right nil has rank != 1"
|
||||
return
|
||||
}
|
||||
}
|
||||
ii := 1
|
||||
if l != nil {
|
||||
res, il := l.wellFormedSubtree(t, min, t.key)
|
||||
if res != "" {
|
||||
s = "L." + res
|
||||
return
|
||||
}
|
||||
ii += il
|
||||
}
|
||||
if r != nil {
|
||||
res, ir := r.wellFormedSubtree(t, t.key, max)
|
||||
if res != "" {
|
||||
s = "R." + res
|
||||
return
|
||||
}
|
||||
ii += ir
|
||||
}
|
||||
i = ii
|
||||
return
|
||||
}
|
||||
|
||||
func (t *RBTint32) DebugString() string {
|
||||
if t.root == nil {
|
||||
return ""
|
||||
}
|
||||
return t.root.DebugString()
|
||||
}
|
||||
|
||||
// DebugString prints the tree with nested information
|
||||
// to allow an eyeball check on the tree balance.
|
||||
func (t *node32) DebugString() string {
|
||||
s := ""
|
||||
if t.left != nil {
|
||||
s += "["
|
||||
s += t.left.DebugString()
|
||||
s += "]"
|
||||
}
|
||||
s += fmt.Sprintf("%v=%v:%d", t.key, t.data, t.rank)
|
||||
if t.right != nil {
|
||||
s += "["
|
||||
s += t.right.DebugString()
|
||||
s += "]"
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
||||
func allRBT32Ops(te *testing.T, x []int32) {
|
||||
t := &RBTint32{}
|
||||
for i, d := range x {
|
||||
x[i] = d + d // Double everything for glb/lub testing
|
||||
}
|
||||
|
||||
// fmt.Printf("Inserting double of %v", x)
|
||||
k := 0
|
||||
min := int32(0x7fffffff)
|
||||
max := int32(-0x80000000)
|
||||
for _, d := range x {
|
||||
if d < min {
|
||||
min = d
|
||||
}
|
||||
|
||||
if d > max {
|
||||
max = d
|
||||
}
|
||||
|
||||
t.Insert(d, sstring(fmt.Sprintf("%v", d)))
|
||||
k++
|
||||
s, i := t.wellFormed()
|
||||
if i != k {
|
||||
te.Errorf("Wrong tree size %v, expected %v for %v", i, k, t.DebugString())
|
||||
}
|
||||
if s != "" {
|
||||
te.Errorf("Tree consistency problem at %v", s)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
oops := false
|
||||
|
||||
for _, d := range x {
|
||||
s := fmt.Sprintf("%v", d)
|
||||
f := t.Find(d)
|
||||
|
||||
// data
|
||||
if s != fmt.Sprintf("%v", f) {
|
||||
te.Errorf("s(%v) != f(%v)", s, f)
|
||||
oops = true
|
||||
}
|
||||
}
|
||||
|
||||
if !oops {
|
||||
for _, d := range x {
|
||||
s := fmt.Sprintf("%v", d)
|
||||
|
||||
kg, g := t.Glb(d + 1)
|
||||
kge, ge := t.GlbEq(d)
|
||||
kl, l := t.Lub(d - 1)
|
||||
kle, le := t.LubEq(d)
|
||||
|
||||
// keys
|
||||
if d != kg {
|
||||
te.Errorf("d(%v) != kg(%v)", d, kg)
|
||||
}
|
||||
if d != kl {
|
||||
te.Errorf("d(%v) != kl(%v)", d, kl)
|
||||
}
|
||||
if d != kge {
|
||||
te.Errorf("d(%v) != kge(%v)", d, kge)
|
||||
}
|
||||
if d != kle {
|
||||
te.Errorf("d(%v) != kle(%v)", d, kle)
|
||||
}
|
||||
// data
|
||||
if s != fmt.Sprintf("%v", g) {
|
||||
te.Errorf("s(%v) != g(%v)", s, g)
|
||||
}
|
||||
if s != fmt.Sprintf("%v", l) {
|
||||
te.Errorf("s(%v) != l(%v)", s, l)
|
||||
}
|
||||
if s != fmt.Sprintf("%v", ge) {
|
||||
te.Errorf("s(%v) != ge(%v)", s, ge)
|
||||
}
|
||||
if s != fmt.Sprintf("%v", le) {
|
||||
te.Errorf("s(%v) != le(%v)", s, le)
|
||||
}
|
||||
}
|
||||
|
||||
for _, d := range x {
|
||||
s := fmt.Sprintf("%v", d)
|
||||
kge, ge := t.GlbEq(d + 1)
|
||||
kle, le := t.LubEq(d - 1)
|
||||
if d != kge {
|
||||
te.Errorf("d(%v) != kge(%v)", d, kge)
|
||||
}
|
||||
if d != kle {
|
||||
te.Errorf("d(%v) != kle(%v)", d, kle)
|
||||
}
|
||||
if s != fmt.Sprintf("%v", ge) {
|
||||
te.Errorf("s(%v) != ge(%v)", s, ge)
|
||||
}
|
||||
if s != fmt.Sprintf("%v", le) {
|
||||
te.Errorf("s(%v) != le(%v)", s, le)
|
||||
}
|
||||
}
|
||||
|
||||
kg, g := t.Glb(min)
|
||||
kge, ge := t.GlbEq(min - 1)
|
||||
kl, l := t.Lub(max)
|
||||
kle, le := t.LubEq(max + 1)
|
||||
fmin := t.Find(min - 1)
|
||||
fmax := t.Find(min + 11)
|
||||
|
||||
if kg != 0 || kge != 0 || kl != 0 || kle != 0 {
|
||||
te.Errorf("Got non-zero-key for missing query")
|
||||
}
|
||||
|
||||
if g != nil || ge != nil || l != nil || le != nil || fmin != nil || fmax != nil {
|
||||
te.Errorf("Got non-error-data for missing query")
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
func TestAllRBTreeOps(t *testing.T) {
|
||||
allRBT32Ops(t, []int32{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25})
|
||||
allRBT32Ops(t, []int32{22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 3, 2, 1, 25, 24, 23, 12, 11, 10, 9, 8, 7, 6, 5, 4})
|
||||
allRBT32Ops(t, []int32{25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1})
|
||||
allRBT32Ops(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24})
|
||||
allRBT32Ops(t, []int32{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2})
|
||||
allRBT32Ops(t, []int32{24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25})
|
||||
}
|
@ -1,189 +0,0 @@
|
||||
// Copyright 2016 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package ssa
|
||||
|
||||
import "fmt"
|
||||
|
||||
// A SparseTreeMap encodes a subset of nodes within a tree
|
||||
// used for sparse-ancestor queries.
|
||||
//
|
||||
// Combined with a SparseTreeHelper, this supports an Insert
|
||||
// to add a tree node to the set and a Find operation to locate
|
||||
// the nearest tree ancestor of a given node such that the
|
||||
// ancestor is also in the set.
|
||||
//
|
||||
// Given a set of blocks {B1, B2, B3} within the dominator tree, established
|
||||
// by stm.Insert()ing B1, B2, B3, etc, a query at block B
|
||||
// (performed with stm.Find(stm, B, adjust, helper))
|
||||
// will return the member of the set that is the nearest strict
|
||||
// ancestor of B within the dominator tree, or nil if none exists.
|
||||
// The expected complexity of this operation is the log of the size
|
||||
// the set, given certain assumptions about sparsity (the log complexity
|
||||
// could be guaranteed with additional data structures whose constant-
|
||||
// factor overhead has not yet been justified.)
|
||||
//
|
||||
// The adjust parameter allows positioning of the insertion
|
||||
// and lookup points within a block -- one of
|
||||
// AdjustBefore, AdjustWithin, AdjustAfter,
|
||||
// where lookups at AdjustWithin can find insertions at
|
||||
// AdjustBefore in the same block, and lookups at AdjustAfter
|
||||
// can find insertions at either AdjustBefore or AdjustWithin
|
||||
// in the same block. (Note that this assumes a gappy numbering
|
||||
// such that exit number or exit number is separated from its
|
||||
// nearest neighbor by at least 3).
|
||||
//
|
||||
// The Sparse Tree lookup algorithm is described by
|
||||
// Paul F. Dietz. Maintaining order in a linked list. In
|
||||
// Proceedings of the Fourteenth Annual ACM Symposium on
|
||||
// Theory of Computing, pages 122–127, May 1982.
|
||||
// and by
|
||||
// Ben Wegbreit. Faster retrieval from context trees.
|
||||
// Communications of the ACM, 19(9):526–529, September 1976.
|
||||
type SparseTreeMap RBTint32
|
||||
|
||||
// A SparseTreeHelper contains indexing and allocation data
|
||||
// structures common to a collection of SparseTreeMaps, as well
|
||||
// as exposing some useful control-flow-related data to other
|
||||
// packages, such as gc.
|
||||
type SparseTreeHelper struct {
|
||||
Sdom []SparseTreeNode // indexed by block.ID
|
||||
Po []*Block // exported data; the blocks, in a post-order
|
||||
Dom []*Block // exported data; the dominator of this block.
|
||||
Ponums []int32 // exported data; Po[Ponums[b.ID]] == b; the index of b in Po
|
||||
}
|
||||
|
||||
// NewSparseTreeHelper returns a SparseTreeHelper for use
|
||||
// in the gc package, for example in phi-function placement.
|
||||
func NewSparseTreeHelper(f *Func) *SparseTreeHelper {
|
||||
dom := f.Idom()
|
||||
ponums := make([]int32, f.NumBlocks())
|
||||
po := postorderWithNumbering(f, ponums)
|
||||
return makeSparseTreeHelper(newSparseTree(f, dom), dom, po, ponums)
|
||||
}
|
||||
|
||||
func (h *SparseTreeHelper) NewTree() *SparseTreeMap {
|
||||
return &SparseTreeMap{}
|
||||
}
|
||||
|
||||
func makeSparseTreeHelper(sdom SparseTree, dom, po []*Block, ponums []int32) *SparseTreeHelper {
|
||||
helper := &SparseTreeHelper{Sdom: []SparseTreeNode(sdom),
|
||||
Dom: dom,
|
||||
Po: po,
|
||||
Ponums: ponums,
|
||||
}
|
||||
return helper
|
||||
}
|
||||
|
||||
// A sparseTreeMapEntry contains the data stored in a binary search
|
||||
// data structure indexed by (dominator tree walk) entry and exit numbers.
|
||||
// Each entry is added twice, once keyed by entry-1/entry/entry+1 and
|
||||
// once keyed by exit+1/exit/exit-1.
|
||||
//
|
||||
// Within a sparse tree, the two entries added bracket all their descendant
|
||||
// entries within the tree; the first insertion is keyed by entry number,
|
||||
// which comes before all the entry and exit numbers of descendants, and
|
||||
// the second insertion is keyed by exit number, which comes after all the
|
||||
// entry and exit numbers of the descendants.
|
||||
type sparseTreeMapEntry struct {
|
||||
index *SparseTreeNode // references the entry and exit numbers for a block in the sparse tree
|
||||
block *Block // TODO: store this in a separate index.
|
||||
data interface{}
|
||||
sparseParent *sparseTreeMapEntry // references the nearest ancestor of this block in the sparse tree.
|
||||
adjust int32 // at what adjustment was this node entered into the sparse tree? The same block may be entered more than once, but at different adjustments.
|
||||
}
|
||||
|
||||
// Insert creates a definition within b with data x.
|
||||
// adjust indicates where in the block should be inserted:
|
||||
// AdjustBefore means defined at a phi function (visible Within or After in the same block)
|
||||
// AdjustWithin means defined within the block (visible After in the same block)
|
||||
// AdjustAfter means after the block (visible within child blocks)
|
||||
func (m *SparseTreeMap) Insert(b *Block, adjust int32, x interface{}, helper *SparseTreeHelper) {
|
||||
rbtree := (*RBTint32)(m)
|
||||
blockIndex := &helper.Sdom[b.ID]
|
||||
if blockIndex.entry == 0 {
|
||||
// assert unreachable
|
||||
return
|
||||
}
|
||||
// sp will be the sparse parent in this sparse tree (nearest ancestor in the larger tree that is also in this sparse tree)
|
||||
sp := m.findEntry(b, adjust, helper)
|
||||
entry := &sparseTreeMapEntry{index: blockIndex, block: b, data: x, sparseParent: sp, adjust: adjust}
|
||||
|
||||
right := blockIndex.exit - adjust
|
||||
_ = rbtree.Insert(right, entry)
|
||||
|
||||
left := blockIndex.entry + adjust
|
||||
_ = rbtree.Insert(left, entry)
|
||||
|
||||
// This newly inserted block may now be the sparse parent of some existing nodes (the new sparse children of this block)
|
||||
// Iterate over nodes bracketed by this new node to correct their parent, but not over the proper sparse descendants of those nodes.
|
||||
_, d := rbtree.Lub(left) // Lub (not EQ) of left is either right or a sparse child
|
||||
for tme := d.(*sparseTreeMapEntry); tme != entry; tme = d.(*sparseTreeMapEntry) {
|
||||
tme.sparseParent = entry
|
||||
// all descendants of tme are unchanged;
|
||||
// next sparse sibling (or right-bracketing sparse parent == entry) is first node after tme.index.exit - tme.adjust
|
||||
_, d = rbtree.Lub(tme.index.exit - tme.adjust)
|
||||
}
|
||||
}
|
||||
|
||||
// Find returns the definition visible from block b, or nil if none can be found.
|
||||
// Adjust indicates where the block should be searched.
|
||||
// AdjustBefore searches before the phi functions of b.
|
||||
// AdjustWithin searches starting at the phi functions of b.
|
||||
// AdjustAfter searches starting at the exit from the block, including normal within-block definitions.
|
||||
//
|
||||
// Note that Finds are properly nested with Inserts:
|
||||
// m.Insert(b, a) followed by m.Find(b, a) will not return the result of the insert,
|
||||
// but m.Insert(b, AdjustBefore) followed by m.Find(b, AdjustWithin) will.
|
||||
//
|
||||
// Another way to think of this is that Find searches for inputs, Insert defines outputs.
|
||||
func (m *SparseTreeMap) Find(b *Block, adjust int32, helper *SparseTreeHelper) interface{} {
|
||||
v := m.findEntry(b, adjust, helper)
|
||||
if v == nil {
|
||||
return nil
|
||||
}
|
||||
return v.data
|
||||
}
|
||||
|
||||
func (m *SparseTreeMap) findEntry(b *Block, adjust int32, helper *SparseTreeHelper) *sparseTreeMapEntry {
|
||||
rbtree := (*RBTint32)(m)
|
||||
if rbtree == nil {
|
||||
return nil
|
||||
}
|
||||
blockIndex := &helper.Sdom[b.ID]
|
||||
|
||||
// The Glb (not EQ) of this probe is either the entry-indexed end of a sparse parent
|
||||
// or the exit-indexed end of a sparse sibling
|
||||
_, v := rbtree.Glb(blockIndex.entry + adjust)
|
||||
|
||||
if v == nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
otherEntry := v.(*sparseTreeMapEntry)
|
||||
if otherEntry.index.exit >= blockIndex.exit { // otherEntry exit after blockIndex exit; therefore, brackets
|
||||
return otherEntry
|
||||
}
|
||||
// otherEntry is a sparse Sibling, and shares the same sparse parent (nearest ancestor within larger tree)
|
||||
sp := otherEntry.sparseParent
|
||||
if sp != nil {
|
||||
if sp.index.exit < blockIndex.exit { // no ancestor found
|
||||
return nil
|
||||
}
|
||||
return sp
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *SparseTreeMap) String() string {
|
||||
tree := (*RBTint32)(m)
|
||||
return tree.String()
|
||||
}
|
||||
|
||||
func (e *sparseTreeMapEntry) String() string {
|
||||
if e == nil {
|
||||
return "nil"
|
||||
}
|
||||
return fmt.Sprintf("(index=%v, block=%v, data=%v)->%v", e.index, e.block, e.data, e.sparseParent)
|
||||
}
|
Loading…
Reference in New Issue
Block a user