1
0
mirror of https://github.com/golang/go synced 2024-11-18 11:55:01 -07:00

math/big: handling of +/-Inf and zero precision, enable zero values

- clarified representation of +/-Inf
- only 0 and Inf values can have 0 precision
- a zero precision value used as result value takes the max precision
  of the arguments (to be fine-tuned for setters)
- the zero precision approach makes Float zero values possible
  (they represent +0)
- more tests

Missing: Filling in the blanks. More tests.

Change-Id: Ibb4f97e12e1f356c3085ce80f3464e97b82ac130
Reviewed-on: https://go-review.googlesource.com/4000
Reviewed-by: Alan Donovan <adonovan@google.com>
This commit is contained in:
Robert Griesemer 2015-02-05 17:21:48 -08:00
parent 9b6ccb1323
commit 15594df6b4
4 changed files with 206 additions and 58 deletions

View File

@ -18,10 +18,6 @@ import (
"math"
)
// TODO(gri): Determine if there's a more natural way to set the precision.
// Should there be a special meaning for prec 0? Such as "full precision"?
// (would be possible for all ops except quotient).
const debugFloat = true // enable for debugging
// Internal representation: A floating-point value x != 0 consists
@ -45,14 +41,15 @@ const debugFloat = true // enable for debugging
//
// sign * mantissa * 2**exponent
//
// Each value also has a precision, rounding mode, and accuracy value:
// The precision is the number of mantissa bits used to represent a
// value, and the result of operations is rounded to that many bits
// according to the value's rounding mode (unless specified othewise).
// Each value also has a precision, rounding mode, and accuracy value.
// The precision is the number of mantissa bits used to represent the
// value, and the result of an operation is rounded to that many bits
// according to the value's rounding mode (unless specified otherwise).
// The accuracy value indicates the rounding error with respect to the
// exact (not rounded) value.
//
// The zero value for a Float represents the number 0.
// The zero (uninitialized) value for a Float is ready to use and
// represents the number 0.0 of 0 bit precision.
//
// By setting the desired precision to 24 (or 53) and using ToNearestEven
// rounding, Float arithmetic operations emulate the corresponding float32
@ -71,14 +68,26 @@ type Float struct {
// NewFloat returns a new Float with value x rounded
// to prec bits according to the given rounding mode.
// If prec == 0, the result has value 0.0 independent
// of the value of x.
// BUG(gri) For prec == 0 and x == Inf, the result
// should be Inf as well.
func NewFloat(x float64, prec uint, mode RoundingMode) *Float {
// TODO(gri) should make this more efficient
z := new(Float).SetFloat64(x)
return z.Round(z, prec, mode)
var z Float
if prec > 0 {
// TODO(gri) should make this more efficient
z.SetFloat64(x)
return z.Round(&z, prec, mode)
}
z.mode = mode // TODO(gri) don't do this twice for prec > 0
return &z
}
// infExp is the exponent value for infinity.
const infExp = 1<<31 - 1
// Special exponent values.
const (
maxExp = math.MaxInt32
infExp = -maxExp - 1 // exponent value for Inf values
)
// NewInf returns a new Float with value positive infinity (sign >= 0),
// or negative infinity (sign < 0).
@ -86,12 +95,16 @@ func NewInf(sign int) *Float {
return &Float{neg: sign < 0, exp: infExp}
}
// setExp sets the exponent for z.
// If the exponent is too small or too large, z becomes +/-Inf.
func (z *Float) setExp(e int64) {
e32 := int32(e)
if int64(e32) != e {
panic("exponent overflow") // TODO(gri) handle this gracefully
if -maxExp <= e && e <= maxExp {
z.exp = int32(e)
return
}
z.exp = e32
// Inf
z.mant = z.mant[:0]
z.exp = infExp
}
// Accuracy describes the rounding error produced by the most recent
@ -155,7 +168,7 @@ func (mode RoundingMode) String() string {
}
// Precision returns the mantissa precision of x in bits.
// The precision may be 0 if x == 0. // TODO(gri) Determine a better approach.
// The precision may be 0 for |x| == 0 or |x| == Inf.
func (x *Float) Precision() uint {
return uint(x.prec)
}
@ -170,9 +183,17 @@ func (x *Float) Mode() RoundingMode {
return x.mode
}
// IsInf reports whether x is an infinity, according to sign.
// If sign > 0, IsInf reports whether x is positive infinity.
// If sign < 0, IsInf reports whether x is negative infinity.
// If sign == 0, IsInf reports whether x is either infinity.
func (x *Float) IsInf(sign int) bool {
return x.exp == infExp && (sign == 0 || x.neg == (sign < 0))
}
// debugging support
func (x *Float) validate() {
// assumes x != 0
// assumes x != 0 && x != Inf
const msb = 1 << (_W - 1)
m := len(x.mant)
if x.mant[m-1]&msb == 0 {
@ -196,6 +217,9 @@ func (z *Float) round(sbit uint) {
return
}
// handle Inf
// TODO(gri) handle Inf
if debugFloat {
z.validate()
}
@ -399,10 +423,15 @@ func (z *Float) SetInt64(x int64) *Float {
// SetFloat64 sets z to x and returns z.
// Precision is set to 53 bits.
// TODO(gri) test denormals, +/-Inf, disallow NaN.
// TODO(gri) test denormals, disallow NaN.
func (z *Float) SetFloat64(x float64) *Float {
z.prec = 53
z.neg = math.Signbit(x) // handle -0 correctly (-0 == 0)
z.prec = 53
if math.IsInf(x, 0) {
z.mant = z.mant[:0]
z.exp = infExp
return z
}
if x == 0 {
z.mant = z.mant[:0]
z.exp = 0
@ -484,7 +513,7 @@ func high64(x nat) uint64 {
return v
}
// TODO(gri) FIX THIS (rounding mode, errors, accuracy, etc.)
// TODO(gri) FIX THIS (Inf, rounding mode, errors, accuracy, etc.)
func (x *Float) Uint64() uint64 {
m := high64(x.mant)
s := x.exp
@ -494,7 +523,7 @@ func (x *Float) Uint64() uint64 {
return 0 // imprecise
}
// TODO(gri) FIX THIS (rounding mode, errors, etc.)
// TODO(gri) FIX THIS (inf, rounding mode, errors, etc.)
func (x *Float) Int64() int64 {
v := int64(x.Uint64())
if x.neg {
@ -507,6 +536,15 @@ func (x *Float) Int64() int64 {
// by rounding to nearest with 53 bits precision.
// TODO(gri) implement/document error scenarios.
func (x *Float) Float64() (float64, Accuracy) {
// x == +/-Inf
if x.exp == infExp {
var sign int
if x.neg {
sign = -1
}
return math.Inf(sign), Exact
}
// x == 0
if len(x.mant) == 0 {
return 0, Exact
}
@ -561,7 +599,7 @@ func (z *Float) Neg(x *Float) *Float {
}
// z = x + y, ignoring signs of x and y.
// x and y must not be 0.
// x and y must not be 0 or an Inf.
func (z *Float) uadd(x, y *Float) {
// Note: This implementation requires 2 shifts most of the
// time. It is also inefficient if exponents or precisions
@ -603,7 +641,7 @@ func (z *Float) uadd(x, y *Float) {
}
// z = x - y for x >= y, ignoring signs of x and y.
// x and y must not be zero.
// x and y must not be 0 or an Inf.
func (z *Float) usub(x, y *Float) {
// This code is symmetric to uadd.
// We have not factored the common code out because
@ -643,7 +681,7 @@ func (z *Float) usub(x, y *Float) {
}
// z = x * y, ignoring signs of x and y.
// x and y must not be zero.
// x and y must not be 0 or an Inf.
func (z *Float) umul(x, y *Float) {
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("umul called with 0 argument")
@ -664,7 +702,7 @@ func (z *Float) umul(x, y *Float) {
}
// z = x / y, ignoring signs of x and y.
// x and y must not be zero.
// x and y must not be 0 or an Inf.
func (z *Float) uquo(x, y *Float) {
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("uquo called with 0 argument")
@ -708,7 +746,7 @@ func (z *Float) uquo(x, y *Float) {
}
// ucmp returns -1, 0, or 1, depending on whether x < y, x == y, or x > y,
// while ignoring the signs of x and y. x and y must not be zero.
// while ignoring the signs of x and y. x and y must not be 0 or an Inf.
func (x *Float) ucmp(y *Float) int {
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("ucmp called with 0 argument")
@ -765,16 +803,24 @@ func (x *Float) ucmp(y *Float) int {
// sign as x even when x is zero.
// Add sets z to the rounded sum x+y and returns z.
// If z's precision is 0, it is set to the larger of
// x's or y's precision before the operation.
// Rounding is performed according to z's precision
// and rounding mode; and z's accuracy reports the
// result error relative to the exact (not rounded)
// result.
func (z *Float) Add(x, y *Float) *Float {
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
}
// TODO(gri) what about -0?
if len(y.mant) == 0 {
// TODO(gri) handle Inf
return z.Round(x, z.prec, z.mode)
}
if len(x.mant) == 0 {
// TODO(gri) handle Inf
return z.Round(y, z.prec, z.mode)
}
@ -799,13 +845,15 @@ func (z *Float) Add(x, y *Float) *Float {
}
// Sub sets z to the rounded difference x-y and returns z.
// Rounding is performed according to z's precision
// and rounding mode; and z's accuracy reports the
// result error relative to the exact (not rounded)
// result.
// Precision, rounding, and accuracy reporting are as for Add.
func (z *Float) Sub(x, y *Float) *Float {
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
}
// TODO(gri) what about -0?
if len(y.mant) == 0 {
// TODO(gri) handle Inf
return z.Round(x, z.prec, z.mode)
}
if len(x.mant) == 0 {
@ -836,11 +884,14 @@ func (z *Float) Sub(x, y *Float) *Float {
}
// Mul sets z to the rounded product x*y and returns z.
// Rounding is performed according to z's precision
// and rounding mode; and z's accuracy reports the
// result error relative to the exact (not rounded)
// result.
// Precision, rounding, and accuracy reporting are as for Add.
func (z *Float) Mul(x, y *Float) *Float {
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
}
// TODO(gri) handle Inf
// TODO(gri) what about -0?
if len(x.mant) == 0 || len(y.mant) == 0 {
z.neg = false
@ -858,46 +909,61 @@ func (z *Float) Mul(x, y *Float) *Float {
// Quo sets z to the rounded quotient x/y and returns z.
// If y == 0, a division-by-zero run-time panic occurs. TODO(gri) this should become Inf
// Rounding is performed according to z's precision
// and rounding mode; and z's accuracy reports the
// result error relative to the exact (not rounded)
// result.
// Precision, rounding, and accuracy reporting are as for Add.
func (z *Float) Quo(x, y *Float) *Float {
// TODO(gri) what about -0?
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
}
// TODO(gri) handle Inf
// TODO(gri) check that this is correct
z.neg = x.neg != y.neg
if len(y.mant) == 0 {
z.setExp(infExp)
return z
}
if len(x.mant) == 0 {
z.neg = false
z.mant = z.mant[:0]
z.exp = 0
z.acc = Exact
return z
}
if len(y.mant) == 0 {
panic("division-by-zero") // TODO(gri) handle this better
}
// x, y != 0
z.uquo(x, y)
z.neg = x.neg != y.neg
return z
}
// Lsh sets z to the rounded x * (1<<s) and returns z.
// If z's precision is 0, it is set to x's precision.
// Rounding is performed according to z's precision
// and rounding mode; and z's accuracy reports the
// result error relative to the exact (not rounded)
// result.
func (z *Float) Lsh(x *Float, s uint, mode RoundingMode) *Float {
if z.prec == 0 {
z.prec = x.prec
}
// TODO(gri) handle Inf
z.Round(x, z.prec, mode)
z.setExp(int64(z.exp) + int64(s))
return z
}
// Rsh sets z to the rounded x / (1<<s) and returns z.
// Rounding is performed according to z's precision
// and rounding mode; and z's accuracy reports the
// result error relative to the exact (not rounded)
// result.
// Precision, rounding, and accuracy reporting are as for Lsh.
func (z *Float) Rsh(x *Float, s uint, mode RoundingMode) *Float {
if z.prec == 0 {
z.prec = x.prec
}
// TODO(gri) handle Inf
z.Round(x, z.prec, mode)
z.setExp(int64(z.exp) - int64(s))
return z
@ -910,6 +976,8 @@ func (z *Float) Rsh(x *Float, s uint, mode RoundingMode) *Float {
// +1 if x > y
//
func (x *Float) Cmp(y *Float) int {
// TODO(gri) handle Inf
// special cases
switch {
case len(x.mant) == 0:
@ -943,7 +1011,7 @@ func (x *Float) Cmp(y *Float) int {
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0 (incl. x == -0)
// 0 if x == 0 (incl. x == -0) // TODO(gri) is this correct?
// +1 if x > 0
//
func (x *Float) Sign() int {
@ -955,3 +1023,10 @@ func (x *Float) Sign() int {
}
return 1
}
func umax(x, y uint) uint {
if x < y {
return x
}
return y
}

View File

@ -6,11 +6,70 @@ package big
import (
"fmt"
"math"
"sort"
"strconv"
"testing"
)
func TestFloatZeroValue(t *testing.T) {
// zero (uninitialized) value is a ready-to-use 0.0
var x Float
if s := x.Format('f', 1); s != "0.0" {
t.Errorf("zero value = %s; want 0.0", s)
}
// zero value has precision 0
if prec := x.Precision(); prec != 0 {
t.Errorf("prec = %d; want 0", prec)
}
// zero value can be used in any and all positions of binary operations
make := func(x int) *Float {
if x == 0 {
return new(Float) // 0 translates into the zero value
}
return NewFloat(float64(x), 10, 0)
}
for _, test := range []struct {
z, x, y, want int
opname rune
op func(z, x, y *Float) *Float
}{
{0, 0, 0, 0, '+', (*Float).Add},
{0, 1, 2, 3, '+', (*Float).Add},
{1, 2, 0, 2, '+', (*Float).Add},
{2, 0, 1, 1, '+', (*Float).Add},
{0, 0, 0, 0, '-', (*Float).Sub},
{0, 1, 2, -1, '-', (*Float).Sub},
{1, 2, 0, 2, '-', (*Float).Sub},
{2, 0, 1, -1, '-', (*Float).Sub},
{0, 0, 0, 0, '*', (*Float).Mul},
{0, 1, 2, 2, '*', (*Float).Mul},
{1, 2, 0, 0, '*', (*Float).Mul},
{2, 0, 1, 0, '*', (*Float).Mul},
{0, 0, 0, 0, '/', (*Float).Quo},
{0, 2, 1, 2, '/', (*Float).Quo},
{1, 2, 0, 0, '/', (*Float).Quo},
{2, 0, 1, 0, '/', (*Float).Quo},
} {
z := make(test.z)
test.op(z, make(test.x), make(test.y))
if got := int(z.Int64()); got != test.want {
t.Errorf("%d %c %d = %d; want %d", test.x, test.opname, test.y, got, test.want)
}
}
// TODO(gri) test how precision is set for zero value results
}
func TestFloatInf(t *testing.T) {
// TODO(gri) implement this
}
func fromBinary(s string) int64 {
x, err := strconv.ParseInt(s, 2, 64)
if err != nil {
@ -244,6 +303,9 @@ func TestFloatSetFloat64(t *testing.T) {
3.14159265e10,
2.718281828e-123,
1.0 / 3,
math.Inf(-1),
math.Inf(0),
-math.Inf(1),
} {
for i := range [2]int{} {
if i&1 != 0 {

View File

@ -191,13 +191,26 @@ func (x *Float) Format(format byte, prec int) string {
// Append appends the string form of the floating-point number x,
// as generated by x.Format, to buf and returns the extended buffer.
func (x *Float) Append(buf []byte, format byte, prec int) []byte {
// pick off simple cases
// TODO(gri) factor out handling of sign?
// Inf
if x.IsInf(0) {
var ch byte = '+'
if x.neg {
ch = '-'
}
buf = append(buf, ch)
return append(buf, "Inf"...)
}
// easy formats
switch format {
case 'b':
return x.bstring(buf)
case 'p':
return x.pstring(buf)
}
return x.bigFtoa(buf, format, prec)
}
@ -212,7 +225,6 @@ func (x *Float) String() string {
// The mantissa is normalized such that is uses x.Precision() bits in binary
// representation.
func (x *Float) bstring(buf []byte) []byte {
// TODO(gri) handle Inf
if x.neg {
buf = append(buf, '-')
}
@ -240,7 +252,6 @@ func (x *Float) bstring(buf []byte) []byte {
// ad returns the extended buffer.
// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.
func (x *Float) pstring(buf []byte) []byte {
// TODO(gri) handle Inf
if x.neg {
buf = append(buf, '-')
}

View File

@ -192,9 +192,9 @@ func TestFloat64Format(t *testing.T) {
// {math.NaN(), 'g', -1, "NaN"},
// {-math.NaN(), 'g', -1, "NaN"},
// {math.Inf(0), 'g', -1, "+Inf"},
// {math.Inf(-1), 'g', -1, "-Inf"},
// {-math.Inf(0), 'g', -1, "-Inf"},
{math.Inf(0), 'g', -1, "+Inf"},
{math.Inf(-1), 'g', -1, "-Inf"},
{-math.Inf(0), 'g', -1, "-Inf"},
{-1, 'b', -1, "-4503599627370496p-52"},