1
0
mirror of https://github.com/golang/go synced 2024-11-26 05:07:59 -07:00

crypto/elliptic: import fiat-crypto P-521 field implementation

Fiat Cryptography (https://github.com/mit-plv/fiat-crypto) is a project
that produces prime order field implementations (the code that does
arithmetic modulo a prime number) based on a formally verified model.

The formal verification covers some of the most subtle and hard to test
parts of an elliptic curve implementation, like carry chains. It would
probably have prevented #20040 and #43786.

This CL imports a 64-bit implementation of the P-521 base field,
replacing the horribly slow and catastrophically variable time big.Int
CurveParams implementation.

The code in p521_fiat64.go is generated reproducibly by fiat-crypto,
building and running the Dockerfile according to the README.

The code in fiat/p521.go is a thin and idiomatic wrapper around the
fiat-crypto code. It includes an Invert method generated with the help
of github.com/mmcloughlin/addchain.

The code in elliptic/p521.go is a line-by-line port of the CurveParams
implementation. Lsh(x, N) was replaced with repeated Add(x, x) calls.
Mul(x, x) was replaced with Square(x). Mod calls were removed, as all
operations are modulo P. Likewise, Add calls to bring values back to
positive were removed. The ScalarMult ladder implementation is now
constant time, copied from p224ScalarMult. Only other notable changes
are adding a p512Point type to keep (x, y, z) together, and making
addJacobian and doubleJacobian methods on that type, with the usual
receiver semantics to save 4 allocations per step.

This amounts to a proof of concept, and is far from a mature elliptic
curve implementation. Here's a non-exhaustive list of things that need
improvement, most of which are pre-existing issues with crypto/elliptic.
Some of these can be fixed without API change, so can't.

- Marshal and Unmarshal still use the slow, variable time big.Int
  arithmetic. The Curve interface does not expose field operations, so
  we'll have to make our own abstraction.

- Point addition uses an incomplete Jacobian formula, which has variable
  time behaviors for points at infinity and equal points. There are
  better, complete formulae these days, but I wanted to keep this CL
  reviewable against the existing code.

- The scalar multiplication ladder is still heavily variable time. This
  is easy to fix and I'll do it in a follow-up CL, but I wanted to keep
  this one easier to review.

- Fundamentally, values have to go in and out of big.Int representation
  when they pass through the Curve interface, which is both slow and
  slightly variable-time.

- There is no scalar field implementation, so crypto/ecdsa ends up using
  big.Int for signing.

- Extending this to P-384 would involve either duplicating all P-521
  code, or coming up with some lower-level interfaces for the base
  field. Even better, generics, which would maybe let us save heap
  allocations due to virtual calls.

- The readability and idiomaticity of the autogenerated code can
  improve, although we have a clear abstraction and well-enforced
  contract, which makes it unlikely we'll have to resort to manually
  modifying the code. See mit-plv/fiat-crypto#949.

- We could also have a 32-bit implementation, since it's almost free to
  have fiat-crypto generate one.

Anyway, it's definitely better than CurveParams, and definitely faster.

name                   old time/op    new time/op    delta
pkg:crypto/elliptic goos:darwin goarch:arm64
ScalarBaseMult/P521-8    4.18ms ± 3%    0.86ms ± 2%  -79.50%  (p=0.000 n=10+9)
ScalarMult/P521-8        4.17ms ± 2%    0.85ms ± 6%  -79.68%  (p=0.000 n=10+10)
pkg:crypto/ecdsa goos:darwin goarch:arm64
Sign/P521-8              4.23ms ± 1%    0.94ms ± 0%  -77.70%  (p=0.000 n=9+8)
Verify/P521-8            8.31ms ± 2%    1.75ms ± 4%  -78.99%  (p=0.000 n=9+10)
GenerateKey/P521-8       4.15ms ± 2%    0.85ms ± 2%  -79.49%  (p=0.000 n=10+9)

name                   old alloc/op   new alloc/op   delta
pkg:crypto/elliptic goos:darwin goarch:arm64
ScalarBaseMult/P521-8    3.06MB ± 3%    0.00MB ± 0%  -99.97%  (p=0.000 n=10+10)
ScalarMult/P521-8        3.05MB ± 1%    0.00MB ± 0%  -99.97%  (p=0.000 n=9+10)
pkg:crypto/ecdsa goos:darwin goarch:arm64
Sign/P521-8              3.03MB ± 0%    0.01MB ± 0%  -99.74%  (p=0.000 n=10+8)
Verify/P521-8            6.06MB ± 1%    0.00MB ± 0%  -99.93%  (p=0.000 n=9+9)
GenerateKey/P521-8       3.02MB ± 0%    0.00MB ± 0%  -99.96%  (p=0.000 n=9+10)

name                   old allocs/op  new allocs/op  delta
pkg:crypto/elliptic goos:darwin goarch:arm64
ScalarBaseMult/P521-8     19.8k ± 3%      0.0k ± 0%  -99.95%  (p=0.000 n=10+10)
ScalarMult/P521-8         19.7k ± 1%      0.0k ± 0%  -99.95%  (p=0.000 n=9+10)
pkg:crypto/ecdsa goos:darwin goarch:arm64
Sign/P521-8               19.6k ± 0%      0.1k ± 0%  -99.63%  (p=0.000 n=10+10)
Verify/P521-8             39.2k ± 1%      0.1k ± 0%  -99.84%  (p=0.000 n=9+10)
GenerateKey/P521-8        19.5k ± 0%      0.0k ± 0%  -99.91%  (p=0.000 n=9+10)

Updates #40171

Change-Id: Ic898b09a2388382bf51ec007d9a79d72d44efe10
Reviewed-on: https://go-review.googlesource.com/c/go/+/315271
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Katie Hockman <katie@golang.org>
Trust: Katie Hockman <katie@golang.org>
Trust: Filippo Valsorda <filippo@golang.org>
This commit is contained in:
Filippo Valsorda 2021-04-30 17:05:54 -04:00
parent ec4efa4208
commit 14c3d2aa59
8 changed files with 2396 additions and 12 deletions

View File

@ -390,7 +390,6 @@ func UnmarshalCompressed(curve Curve, data []byte) (x, y *big.Int) {
var initonce sync.Once
var p384 *CurveParams
var p521 *CurveParams
func initAll() {
initP224()
@ -410,17 +409,6 @@ func initP384() {
p384.BitSize = 384
}
func initP521() {
// See FIPS 186-3, section D.2.5
p521 = &CurveParams{Name: "P-521"}
p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10)
p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10)
p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16)
p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16)
p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16)
p521.BitSize = 521
}
// P256 returns a Curve which implements NIST P-256 (FIPS 186-3, section D.2.3),
// also known as secp256r1 or prime256v1. The CurveParams.Name of this Curve is
// "P-256".

View File

@ -0,0 +1,12 @@
# Copyright 2021 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
FROM coqorg/coq:8.13.2
RUN git clone https://github.com/mit-plv/fiat-crypto
RUN cd fiat-crypto && git checkout c076f3550bea2bb7f4cb5766a32594b9e67694f2
RUN cd fiat-crypto && git submodule update --init --recursive
RUN cd fiat-crypto && eval $(opam env) && make -j4 standalone-ocaml SKIP_BEDROCK2=1
ENTRYPOINT ["fiat-crypto/src/ExtractionOCaml/unsaturated_solinas"]

View File

@ -0,0 +1,39 @@
The code in this package was autogenerated by the fiat-crypto project
at commit c076f3550 from a formally verified model.
docker build -t fiat-crypto:c076f3550 .
docker run fiat-crypto:c076f3550 --lang Go --no-wide-int --cmovznz-by-mul \
--internal-static --public-function-case camelCase --public-type-case camelCase \
--private-function-case camelCase --private-type-case camelCase \
--no-prefix-fiat --package-name fiat --doc-text-before-function-name '' \
--doc-prepend-header 'Code generated by Fiat Cryptography. DO NOT EDIT.' \
--doc-newline-before-package-declaration p521 64 9 '2^521 - 1' \
carry_mul carry_square carry add sub to_bytes from_bytes selectznz \
> p521_fiat64.go
It comes under the following license.
Copyright (c) 2015-2020 The fiat-crypto Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
THIS SOFTWARE IS PROVIDED BY the fiat-crypto authors "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Berkeley Software Design,
Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The authors are listed at
https://github.com/mit-plv/fiat-crypto/blob/master/AUTHORS

View File

@ -0,0 +1,197 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fiat implements prime order fields using formally verified algorithms
// from the Fiat Cryptography project.
package fiat
import (
"crypto/subtle"
"errors"
)
// P521Element is an integer modulo 2^521 - 1.
//
// The zero value is a valid zero element.
type P521Element struct {
// This element has the following bounds, which are tighter than
// the output bounds of some operations. Those operations must be
// followed by a carry.
//
// [0x0 ~> 0x400000000000000], [0x0 ~> 0x400000000000000], [0x0 ~> 0x400000000000000],
// [0x0 ~> 0x400000000000000], [0x0 ~> 0x400000000000000], [0x0 ~> 0x400000000000000],
// [0x0 ~> 0x400000000000000], [0x0 ~> 0x400000000000000], [0x0 ~> 0x200000000000000]
x [9]uint64
}
// One sets e = 1, and returns e.
func (e *P521Element) One() *P521Element {
*e = P521Element{}
e.x[0] = 1
return e
}
// Equal returns 1 if e == t, and zero otherwise.
func (e *P521Element) Equal(t *P521Element) int {
eBytes := e.Bytes()
tBytes := t.Bytes()
return subtle.ConstantTimeCompare(eBytes, tBytes)
}
var p521ZeroEncoding = new(P521Element).Bytes()
// IsZero returns 1 if e == 0, and zero otherwise.
func (e *P521Element) IsZero() int {
eBytes := e.Bytes()
return subtle.ConstantTimeCompare(eBytes, p521ZeroEncoding)
}
// Set sets e = t, and returns e.
func (e *P521Element) Set(t *P521Element) *P521Element {
e.x = t.x
return e
}
// Bytes returns the 66-byte little-endian encoding of e.
func (e *P521Element) Bytes() []byte {
// This function must be inlined to move the allocation to the parent and
// save it from escaping to the heap.
var out [66]byte
p521ToBytes(&out, &e.x)
return out[:]
}
// SetBytes sets e = v, where v is a little-endian 66-byte encoding, and returns
// e. If v is not 66 bytes or it encodes a value higher than 2^521 - 1, SetBytes
// returns nil and an error, and e is unchanged.
func (e *P521Element) SetBytes(v []byte) (*P521Element, error) {
if len(v) != 66 || v[65] > 1 {
return nil, errors.New("invalid P-521 field encoding")
}
var in [66]byte
copy(in[:], v)
p521FromBytes(&e.x, &in)
return e, nil
}
// Add sets e = t1 + t2, and returns e.
func (e *P521Element) Add(t1, t2 *P521Element) *P521Element {
p521Add(&e.x, &t1.x, &t2.x)
p521Carry(&e.x, &e.x)
return e
}
// Sub sets e = t1 - t2, and returns e.
func (e *P521Element) Sub(t1, t2 *P521Element) *P521Element {
p521Sub(&e.x, &t1.x, &t2.x)
p521Carry(&e.x, &e.x)
return e
}
// Mul sets e = t1 * t2, and returns e.
func (e *P521Element) Mul(t1, t2 *P521Element) *P521Element {
p521CarryMul(&e.x, &t1.x, &t2.x)
return e
}
// Square sets e = t * t, and returns e.
func (e *P521Element) Square(t *P521Element) *P521Element {
p521CarrySquare(&e.x, &t.x)
return e
}
// Select sets e to a if cond == 1, and to b if cond == 0.
func (v *P521Element) Select(a, b *P521Element, cond int) *P521Element {
p521Selectznz(&v.x, p521Uint1(cond), &b.x, &a.x)
return v
}
// Invert sets e = 1/t, and returns e.
//
// If t == 0, Invert returns e = 0.
func (e *P521Element) Invert(t *P521Element) *P521Element {
// Inversion is implemented as exponentiation with exponent p 2.
// The sequence of multiplications and squarings was generated with
// github.com/mmcloughlin/addchain v0.2.0.
var t1, t2 = new(P521Element), new(P521Element)
// _10 = 2 * 1
t1.Square(t)
// _11 = 1 + _10
t1.Mul(t, t1)
// _1100 = _11 << 2
t2.Square(t1)
t2.Square(t2)
// _1111 = _11 + _1100
t1.Mul(t1, t2)
// _11110000 = _1111 << 4
t2.Square(t1)
for i := 0; i < 3; i++ {
t2.Square(t2)
}
// _11111111 = _1111 + _11110000
t1.Mul(t1, t2)
// x16 = _11111111<<8 + _11111111
t2.Square(t1)
for i := 0; i < 7; i++ {
t2.Square(t2)
}
t1.Mul(t1, t2)
// x32 = x16<<16 + x16
t2.Square(t1)
for i := 0; i < 15; i++ {
t2.Square(t2)
}
t1.Mul(t1, t2)
// x64 = x32<<32 + x32
t2.Square(t1)
for i := 0; i < 31; i++ {
t2.Square(t2)
}
t1.Mul(t1, t2)
// x65 = 2*x64 + 1
t2.Square(t1)
t2.Mul(t2, t)
// x129 = x65<<64 + x64
for i := 0; i < 64; i++ {
t2.Square(t2)
}
t1.Mul(t1, t2)
// x130 = 2*x129 + 1
t2.Square(t1)
t2.Mul(t2, t)
// x259 = x130<<129 + x129
for i := 0; i < 129; i++ {
t2.Square(t2)
}
t1.Mul(t1, t2)
// x260 = 2*x259 + 1
t2.Square(t1)
t2.Mul(t2, t)
// x519 = x260<<259 + x259
for i := 0; i < 259; i++ {
t2.Square(t2)
}
t1.Mul(t1, t2)
// return x519<<2 + 1
t1.Square(t1)
t1.Square(t1)
return e.Mul(t1, t)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,37 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fiat_test
import (
"crypto/elliptic/internal/fiat"
"crypto/rand"
"testing"
)
func p521Random(t *testing.T) *fiat.P521Element {
buf := make([]byte, 66)
if _, err := rand.Read(buf); err != nil {
t.Fatal(err)
}
buf[65] &= 1
e, err := new(fiat.P521Element).SetBytes(buf)
if err != nil {
t.Fatal(err)
}
return e
}
func TestP521Invert(t *testing.T) {
a := p521Random(t)
inv := new(fiat.P521Element).Invert(a)
one := new(fiat.P521Element).Mul(a, inv)
if new(fiat.P521Element).One().Equal(one) != 1 {
t.Errorf("a * 1/a != 1; got %x for %x", one.Bytes(), a.Bytes())
}
inv.Invert(new(fiat.P521Element))
if new(fiat.P521Element).Equal(inv) != 1 {
t.Errorf("1/0 != 0; got %x", inv.Bytes())
}
}

254
src/crypto/elliptic/p521.go Normal file
View File

@ -0,0 +1,254 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package elliptic
import (
"crypto/elliptic/internal/fiat"
"math/big"
)
type p521Curve struct {
*CurveParams
}
var p521 p521Curve
var p521Params *CurveParams
func initP521() {
// See FIPS 186-3, section D.2.5
p521.CurveParams = &CurveParams{Name: "P-521"}
p521.P, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", 10)
p521.N, _ = new(big.Int).SetString("6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449", 10)
p521.B, _ = new(big.Int).SetString("051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00", 16)
p521.Gx, _ = new(big.Int).SetString("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66", 16)
p521.Gy, _ = new(big.Int).SetString("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650", 16)
p521.BitSize = 521
}
func (curve p521Curve) Params() *CurveParams {
return curve.CurveParams
}
func (curve p521Curve) IsOnCurve(x, y *big.Int) bool {
x1 := bigIntToFiatP521(x)
y1 := bigIntToFiatP521(y)
b := bigIntToFiatP521(curve.B) // TODO: precompute this value.
// x³ - 3x + b.
x3 := new(fiat.P521Element).Square(x1)
x3.Mul(x3, x1)
threeX := new(fiat.P521Element).Add(x1, x1)
threeX.Add(threeX, x1)
x3.Sub(x3, threeX)
x3.Add(x3, b)
// y² = x³ - 3x + b
y2 := new(fiat.P521Element).Square(y1)
return x3.Equal(y2) == 1
}
type p512Point struct {
x, y, z *fiat.P521Element
}
func fiatP521ToBigInt(x *fiat.P521Element) *big.Int {
xBytes := x.Bytes()
for i := range xBytes[:len(xBytes)/2] {
xBytes[i], xBytes[len(xBytes)-i-1] = xBytes[len(xBytes)-i-1], xBytes[i]
}
return new(big.Int).SetBytes(xBytes)
}
// affineFromJacobian brings a point in Jacobian coordinates back to affine
// coordinates, with (0, 0) representing infinity by convention. It also goes
// back to big.Int values to match the exposed API.
func (curve p521Curve) affineFromJacobian(p *p512Point) (x, y *big.Int) {
if p.z.IsZero() == 1 {
return new(big.Int), new(big.Int)
}
zinv := new(fiat.P521Element).Invert(p.z)
zinvsq := new(fiat.P521Element).Mul(zinv, zinv)
xx := new(fiat.P521Element).Mul(p.x, zinvsq)
zinvsq.Mul(zinvsq, zinv)
yy := new(fiat.P521Element).Mul(p.y, zinvsq)
return fiatP521ToBigInt(xx), fiatP521ToBigInt(yy)
}
func bigIntToFiatP521(x *big.Int) *fiat.P521Element {
xBytes := new(big.Int).Mod(x, p521.P).FillBytes(make([]byte, 66))
for i := range xBytes[:len(xBytes)/2] {
xBytes[i], xBytes[len(xBytes)-i-1] = xBytes[len(xBytes)-i-1], xBytes[i]
}
x1, err := new(fiat.P521Element).SetBytes(xBytes)
if err != nil {
// The input is reduced modulo P and encoded in a fixed size bytes
// slice, this should be impossible.
panic("internal error: bigIntToFiatP521")
}
return x1
}
// jacobianFromAffine converts (x, y) affine coordinates into (x, y, z) Jacobian
// coordinates. It also converts from big.Int to fiat, which is necessarily a
// messy and variable-time operation, which we can't avoid due to the exposed API.
func (curve p521Curve) jacobianFromAffine(x, y *big.Int) *p512Point {
// (0, 0) is by convention the point at infinity, which can't be represented
// in affine coordinates, but is (0, 0, 0) in Jacobian.
if x.Sign() == 0 && y.Sign() == 0 {
return &p512Point{
x: new(fiat.P521Element),
y: new(fiat.P521Element),
z: new(fiat.P521Element),
}
}
return &p512Point{
x: bigIntToFiatP521(x),
y: bigIntToFiatP521(y),
z: new(fiat.P521Element).One(),
}
}
func (curve p521Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
p1 := curve.jacobianFromAffine(x1, y1)
p2 := curve.jacobianFromAffine(x2, y2)
return curve.affineFromJacobian(p1.addJacobian(p1, p2))
}
// addJacobian sets q = p1 + p2, and returns q. The points may overlap.
func (q *p512Point) addJacobian(p1, p2 *p512Point) *p512Point {
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
if p1.z.IsZero() == 1 {
q.x.Set(p2.x)
q.y.Set(p2.y)
q.z.Set(p2.z)
return q
}
if p2.z.IsZero() == 1 {
q.x.Set(p1.x)
q.y.Set(p1.y)
q.z.Set(p1.z)
return q
}
z1z1 := new(fiat.P521Element).Square(p1.z)
z2z2 := new(fiat.P521Element).Square(p2.z)
u1 := new(fiat.P521Element).Mul(p1.x, z2z2)
u2 := new(fiat.P521Element).Mul(p2.x, z1z1)
h := new(fiat.P521Element).Sub(u2, u1)
xEqual := h.IsZero() == 1
i := new(fiat.P521Element).Add(h, h)
i.Square(i)
j := new(fiat.P521Element).Mul(h, i)
s1 := new(fiat.P521Element).Mul(p1.y, p2.z)
s1.Mul(s1, z2z2)
s2 := new(fiat.P521Element).Mul(p2.y, p1.z)
s2.Mul(s2, z1z1)
r := new(fiat.P521Element).Sub(s2, s1)
yEqual := r.IsZero() == 1
if xEqual && yEqual {
return q.doubleJacobian(p1)
}
r.Add(r, r)
v := new(fiat.P521Element).Mul(u1, i)
q.x.Set(r)
q.x.Square(q.x)
q.x.Sub(q.x, j)
q.x.Sub(q.x, v)
q.x.Sub(q.x, v)
q.y.Set(r)
v.Sub(v, q.x)
q.y.Mul(q.y, v)
s1.Mul(s1, j)
s1.Add(s1, s1)
q.y.Sub(q.y, s1)
q.z.Add(p1.z, p2.z)
q.z.Square(q.z)
q.z.Sub(q.z, z1z1)
q.z.Sub(q.z, z2z2)
q.z.Mul(q.z, h)
return q
}
func (curve p521Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
p := curve.jacobianFromAffine(x1, y1)
return curve.affineFromJacobian(p.doubleJacobian(p))
}
// doubleJacobian sets q = p + p, and returns q. The points may overlap.
func (q *p512Point) doubleJacobian(p *p512Point) *p512Point {
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
delta := new(fiat.P521Element).Square(p.z)
gamma := new(fiat.P521Element).Square(p.y)
alpha := new(fiat.P521Element).Sub(p.x, delta)
alpha2 := new(fiat.P521Element).Add(p.x, delta)
alpha.Mul(alpha, alpha2)
alpha2.Set(alpha)
alpha.Add(alpha, alpha)
alpha.Add(alpha, alpha2)
beta := alpha2.Mul(p.x, gamma)
q.x.Square(alpha)
beta8 := new(fiat.P521Element).Add(beta, beta)
beta8.Add(beta8, beta8)
beta8.Add(beta8, beta8)
q.x.Sub(q.x, beta8)
q.z.Add(p.y, p.z)
q.z.Square(q.z)
q.z.Sub(q.z, gamma)
q.z.Sub(q.z, delta)
beta.Add(beta, beta)
beta.Add(beta, beta)
beta.Sub(beta, q.x)
q.y.Mul(alpha, beta)
gamma.Square(gamma)
gamma.Add(gamma, gamma)
gamma.Add(gamma, gamma)
gamma.Add(gamma, gamma)
q.y.Sub(q.y, gamma)
return q
}
func (curve p521Curve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
B := curve.jacobianFromAffine(Bx, By)
p := &p512Point{
x: new(fiat.P521Element),
y: new(fiat.P521Element),
z: new(fiat.P521Element),
}
for _, byte := range k {
for bitNum := 0; bitNum < 8; bitNum++ {
p.doubleJacobian(p)
if byte&0x80 == 0x80 {
p.addJacobian(B, p)
}
byte <<= 1
}
}
return curve.affineFromJacobian(p)
}
func (curve p521Curve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return curve.ScalarMult(curve.Gx, curve.Gy, k)
}

View File

@ -392,6 +392,7 @@ var depsRules = `
< crypto
< crypto/subtle
< crypto/internal/subtle
< crypto/elliptic/internal/fiat
< crypto/ed25519/internal/edwards25519/field
< crypto/ed25519/internal/edwards25519
< crypto/cipher