1
0
mirror of https://github.com/golang/go synced 2024-11-26 09:38:10 -07:00

[dev.typeparams] cmd/compile: handle calling a method on a type param in stenciling

- Have to delay the extra transformation on methods invoked on a type
   param, since the actual transformation (including path through
   embedded fields) will depend on the instantiated type. I am currently
   doing the transformation during the stencil substitution phase. We
   probably should have a separate pass after noder2 and stenciling,
   which drives the extra transformations that were in the old
   typechecker.

 - We handle method values (that are not called) and method calls. We
   don't currently handle method expressions.

 - Handle type substitution in function types, which is needed for
   function args in generic functions.

 - Added stringer.go and map.go tests, testing the above changes
   (including constraints with embedded interfaces).

Change-Id: I3831a937d2b8814150f75bebf9f23ab10b93fa00
Reviewed-on: https://go-review.googlesource.com/c/go/+/290550
TryBot-Result: Go Bot <gobot@golang.org>
Trust: Dan Scales <danscales@google.com>
Trust: Robert Griesemer <gri@golang.org>
Run-TryBot: Dan Scales <danscales@google.com>
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Dan Scales 2021-02-08 14:33:51 -08:00
parent ca18c42054
commit 12e15d430d
6 changed files with 220 additions and 16 deletions

View File

@ -87,11 +87,13 @@ func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
case *syntax.CompositeLit: case *syntax.CompositeLit:
return g.compLit(typ, expr) return g.compLit(typ, expr)
case *syntax.FuncLit: case *syntax.FuncLit:
return g.funcLit(typ, expr) return g.funcLit(typ, expr)
case *syntax.AssertExpr: case *syntax.AssertExpr:
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type)) return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
case *syntax.CallExpr: case *syntax.CallExpr:
fun := g.expr(expr.Fun) fun := g.expr(expr.Fun)
if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.Targs) > 0 { if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.Targs) > 0 {
@ -114,6 +116,7 @@ func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
} }
return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots) return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)
case *syntax.IndexExpr: case *syntax.IndexExpr:
var targs []ir.Node var targs []ir.Node
if _, ok := expr.Index.(*syntax.ListExpr); ok { if _, ok := expr.Index.(*syntax.ListExpr); ok {
@ -139,6 +142,7 @@ func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
case *syntax.ParenExpr: case *syntax.ParenExpr:
return g.expr(expr.X) // skip parens; unneeded after parse+typecheck return g.expr(expr.X) // skip parens; unneeded after parse+typecheck
case *syntax.SelectorExpr: case *syntax.SelectorExpr:
// Qualified identifier. // Qualified identifier.
if name, ok := expr.X.(*syntax.Name); ok { if name, ok := expr.X.(*syntax.Name); ok {
@ -147,8 +151,8 @@ func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
return typecheck.Expr(g.use(expr.Sel)) return typecheck.Expr(g.use(expr.Sel))
} }
} }
return g.selectorExpr(pos, typ, expr)
return g.selectorExpr(pos, expr)
case *syntax.SliceExpr: case *syntax.SliceExpr:
return Slice(pos, g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2])) return Slice(pos, g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
@ -172,15 +176,22 @@ func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
// selectorExpr resolves the choice of ODOT, ODOTPTR, OCALLPART (eventually // selectorExpr resolves the choice of ODOT, ODOTPTR, OCALLPART (eventually
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather // ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
// than in typecheck.go. // than in typecheck.go.
func (g *irgen) selectorExpr(pos src.XPos, expr *syntax.SelectorExpr) ir.Node { func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
selinfo := g.info.Selections[expr] x := g.expr(expr.X)
if x.Type().Kind() == types.TTYPEPARAM {
// Leave a method call on a type param as an OXDOT, since it can
// only be fully transformed once it has an instantiated type.
n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
typed(g.typ(typ), n)
return n
}
selinfo := g.info.Selections[expr]
// Everything up to the last selection is an implicit embedded field access, // Everything up to the last selection is an implicit embedded field access,
// and the last selection is determined by selinfo.Kind(). // and the last selection is determined by selinfo.Kind().
index := selinfo.Index() index := selinfo.Index()
embeds, last := index[:len(index)-1], index[len(index)-1] embeds, last := index[:len(index)-1], index[len(index)-1]
x := g.expr(expr.X)
origx := x origx := x
for _, ix := range embeds { for _, ix := range embeds {
x = Implicit(DotField(pos, x, ix)) x = Implicit(DotField(pos, x, ix))

View File

@ -119,6 +119,16 @@ func Call(pos src.XPos, typ *types.Type, fun ir.Node, args []ir.Node, dots bool)
n := ir.NewCallExpr(pos, ir.OCALL, fun, args) n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
n.IsDDD = dots n.IsDDD = dots
if fun.Op() == ir.OXDOT {
if fun.(*ir.SelectorExpr).X.Type().Kind() != types.TTYPEPARAM {
base.FatalfAt(pos, "Expecting type param receiver in %v", fun)
}
// For methods called in a generic function, don't do any extra
// transformations. We will do those later when we create the
// instantiated function and have the correct receiver type.
typed(typ, n)
return n
}
if fun.Op() != ir.OFUNCINST { if fun.Op() != ir.OFUNCINST {
// If no type params, still do normal typechecking, since we're // If no type params, still do normal typechecking, since we're
// still missing some things done by tcCall below (mainly // still missing some things done by tcCall below (mainly

View File

@ -173,6 +173,33 @@ func (subst *subster) node(n ir.Node) ir.Node {
m.SetType(subst.typ(x.Type())) m.SetType(subst.typ(x.Type()))
} }
ir.EditChildren(m, edit) ir.EditChildren(m, edit)
// A method value/call via a type param will have been left as an
// OXDOT. When we see this during stenciling, finish the
// typechecking, now that we have the instantiated receiver type.
// We need to do this now, since the access/selection to the
// method for the real type is very different from the selection
// for the type param.
if x.Op() == ir.OXDOT {
// Will transform to an OCALLPART
m.SetTypecheck(0)
typecheck.Expr(m)
}
if x.Op() == ir.OCALL {
call := m.(*ir.CallExpr)
if call.X.Op() != ir.OCALLPART {
base.FatalfAt(call.Pos(), "Expecting OXDOT with CALL")
}
// Redo the typechecking, now that we know the method
// value is being called
call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
call.X.SetTypecheck(0)
call.X.SetType(nil)
typecheck.Callee(call.X)
m.SetTypecheck(0)
typecheck.Call(m.(*ir.CallExpr))
}
if x.Op() == ir.OCLOSURE { if x.Op() == ir.OCLOSURE {
x := x.(*ir.ClosureExpr) x := x.(*ir.ClosureExpr)
// Need to save/duplicate x.Func.Nname, // Need to save/duplicate x.Func.Nname,
@ -206,6 +233,31 @@ func (subst *subster) list(l []ir.Node) []ir.Node {
return s return s
} }
// tstruct substitutes type params in a structure type
func (subst *subster) tstruct(t *types.Type) *types.Type {
if t.NumFields() == 0 {
return t
}
var newfields []*types.Field
for i, f := range t.Fields().Slice() {
t2 := subst.typ(f.Type)
if t2 != f.Type && newfields == nil {
newfields = make([]*types.Field, t.NumFields())
for j := 0; j < i; j++ {
newfields[j] = t.Field(j)
}
}
if newfields != nil {
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
}
}
if newfields != nil {
return types.NewStruct(t.Pkg(), newfields)
}
return t
}
// typ substitutes any type parameter found with the corresponding type argument. // typ substitutes any type parameter found with the corresponding type argument.
func (subst *subster) typ(t *types.Type) *types.Type { func (subst *subster) typ(t *types.Type) *types.Type {
for i, tp := range subst.tparams.Slice() { for i, tp := range subst.tparams.Slice() {
@ -237,20 +289,23 @@ func (subst *subster) typ(t *types.Type) *types.Type {
} }
case types.TSTRUCT: case types.TSTRUCT:
newfields := make([]*types.Field, t.NumFields()) newt := subst.tstruct(t)
change := false if newt != t {
for i, f := range t.Fields().Slice() { return newt
t2 := subst.typ(f.Type) }
if t2 != f.Type {
change = true case types.TFUNC:
} newrecvs := subst.tstruct(t.Recvs())
newfields[i] = types.NewField(f.Pos, f.Sym, t2) newparams := subst.tstruct(t.Params())
} newresults := subst.tstruct(t.Results())
if change { if newrecvs != t.Recvs() || newparams != t.Params() || newresults != t.Results() {
return types.NewStruct(t.Pkg(), newfields) var newrecv *types.Field
if newrecvs.NumFields() > 0 {
newrecv = newrecvs.Field(0)
}
return types.NewSignature(t.Pkg(), newrecv, nil, newparams.FieldSlice(), newresults.FieldSlice())
} }
// TODO: case TFUNC
// TODO: case TCHAN // TODO: case TCHAN
// TODO: case TMAP // TODO: case TMAP
// TODO: case TINTER // TODO: case TINTER

View File

@ -1657,6 +1657,7 @@ func NewInterface(pkg *Pkg, methods []*Field) *Type {
// not really be needed except for the type checker). // not really be needed except for the type checker).
func NewTypeParam(pkg *Pkg, constraint *Type) *Type { func NewTypeParam(pkg *Pkg, constraint *Type) *Type {
t := New(TTYPEPARAM) t := New(TTYPEPARAM)
constraint.wantEtype(TINTER)
t.methods = constraint.methods t.methods = constraint.methods
t.Extra.(*Interface).pkg = pkg t.Extra.(*Interface).pkg = pkg
return t return t

39
test/typeparam/map.go Normal file
View File

@ -0,0 +1,39 @@
// run -gcflags=-G=3
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"fmt"
"reflect"
"strconv"
)
// Map calls the function f on every element of the slice s,
// returning a new slice of the results.
func mapper[F, T any](s []F, f func(F) T) []T {
r := make([]T, len(s))
for i, v := range s {
r[i] = f(v)
}
return r
}
func main() {
got := mapper([]int{1, 2, 3}, strconv.Itoa)
want := []string{"1", "2", "3"}
if !reflect.DeepEqual(got, want) {
panic(fmt.Sprintf("Got %s, want %s", got, want))
}
fgot := mapper([]float64{2.5, 2.3, 3.5}, func(f float64) string {
return strconv.FormatFloat(f, 'f', -1, 64)
})
fwant := []string{"2.5", "2.3", "3.5"}
if !reflect.DeepEqual(fgot, fwant) {
panic(fmt.Sprintf("Got %s, want %s", fgot, fwant))
}
}

View File

@ -0,0 +1,88 @@
// run -gcflags=-G=3
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test method calls on type parameters
package main
import (
"fmt"
"reflect"
"strconv"
)
// Simple constraint
type Stringer interface {
String() string
}
func stringify[T Stringer](s []T) (ret []string) {
for _, v := range s {
ret = append(ret, v.String())
}
return ret
}
type myint int
func (i myint) String() string {
return strconv.Itoa(int(i))
}
// Constraint with an embedded interface, but still only requires String()
type Stringer2 interface {
CanBeStringer2() int
SubStringer2
}
type SubStringer2 interface {
CanBeSubStringer2() int
String() string
}
func stringify2[T Stringer2](s []T) (ret []string) {
for _, v := range s {
ret = append(ret, v.String())
}
return ret
}
func (myint) CanBeStringer2() int {
return 0
}
func (myint) CanBeSubStringer2() int {
return 0
}
// Test use of method values that are not called
func stringify3[T Stringer](s []T) (ret []string) {
for _, v := range s {
f := v.String
ret = append(ret, f())
}
return ret
}
func main() {
x := []myint{myint(1), myint(2), myint(3)}
got := stringify(x)
want := []string{"1", "2", "3"}
if !reflect.DeepEqual(got, want) {
panic(fmt.Sprintf("Got %s, want %s", got, want))
}
got = stringify2(x)
if !reflect.DeepEqual(got, want) {
panic(fmt.Sprintf("Got %s, want %s", got, want))
}
got = stringify3(x)
if !reflect.DeepEqual(got, want) {
panic(fmt.Sprintf("Got %s, want %s", got, want))
}
}