mirror of
https://github.com/golang/go
synced 2024-11-19 15:05:00 -07:00
math: eliminate overflow in Pow(x,y) for large y
The current implementation uses a shift and add loop to compute the product of x's exponent xe and the integer part of y (yi) for yi up to 1<<63. Since xe is an 11-bit exponent, this product can be up to 74-bits and overflow both 32 and 64-bit int. This change checks whether the accumulated exponent will fit in the 11-bit float exponent of the output and breaks out of the loop early if overflow is detected. The current handling of yi >= 1<<63 uses Exp(y * Log(x)) which incorrectly returns Nan for x<0. In addition, for y this large, Exp(y * Log(x)) can be enumerated to only overflow except when x == -1 since the boundary cases computed exactly: Pow(NextAfter(1.0, Inf(1)), 1<<63) == 2.72332... * 10^889 Pow(NextAfter(1.0, Inf(-1)), 1<<63) == 1.91624... * 10^-445 exceed the range of float64. So, the call can be replaced with a simple case statement analgous to y == Inf that correctly handles x < 0 as well. Fixes #7394 Change-Id: I6f50dc951f3693697f9669697599860604323102 Reviewed-on: https://go-review.googlesource.com/48290 Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
parent
a9257b6b69
commit
1246566142
@ -1586,6 +1586,17 @@ var vfpowSC = [][2]float64{
|
|||||||
{NaN(), 1},
|
{NaN(), 1},
|
||||||
{NaN(), Pi},
|
{NaN(), Pi},
|
||||||
{NaN(), NaN()},
|
{NaN(), NaN()},
|
||||||
|
|
||||||
|
// Issue #7394 overflow checks
|
||||||
|
{2, float64(1 << 32)},
|
||||||
|
{2, -float64(1 << 32)},
|
||||||
|
{-2, float64(1<<32 + 1)},
|
||||||
|
{1 / 2, float64(1 << 45)},
|
||||||
|
{1 / 2, -float64(1 << 45)},
|
||||||
|
{Nextafter(1, 2), float64(1 << 63)},
|
||||||
|
{Nextafter(1, -2), float64(1 << 63)},
|
||||||
|
{Nextafter(-1, 2), float64(1 << 63)},
|
||||||
|
{Nextafter(-1, -2), float64(1 << 63)},
|
||||||
}
|
}
|
||||||
var powSC = []float64{
|
var powSC = []float64{
|
||||||
0, // pow(-Inf, -Pi)
|
0, // pow(-Inf, -Pi)
|
||||||
@ -1647,6 +1658,17 @@ var powSC = []float64{
|
|||||||
NaN(), // pow(NaN, 1)
|
NaN(), // pow(NaN, 1)
|
||||||
NaN(), // pow(NaN, +Pi)
|
NaN(), // pow(NaN, +Pi)
|
||||||
NaN(), // pow(NaN, NaN)
|
NaN(), // pow(NaN, NaN)
|
||||||
|
|
||||||
|
// Issue #7394 overflow checks
|
||||||
|
Inf(1), // pow(2, float64(1 << 32))
|
||||||
|
0, // pow(2, -float64(1 << 32))
|
||||||
|
Inf(-1), // pow(-2, float64(1<<32 + 1))
|
||||||
|
0, // pow(1/2, float64(1 << 45))
|
||||||
|
Inf(1), // pow(1/2, -float64(1 << 45))
|
||||||
|
Inf(1), // pow(Nextafter(1, 2), float64(1 << 63))
|
||||||
|
0, // pow(Nextafter(1, -2), float64(1 << 63))
|
||||||
|
0, // pow(Nextafter(-1, 2), float64(1 << 63))
|
||||||
|
Inf(1), // pow(Nextafter(-1, -2), float64(1 << 63))
|
||||||
}
|
}
|
||||||
|
|
||||||
var vfpow10SC = []int{
|
var vfpow10SC = []int{
|
||||||
|
@ -94,7 +94,16 @@ func pow(x, y float64) float64 {
|
|||||||
return NaN()
|
return NaN()
|
||||||
}
|
}
|
||||||
if yi >= 1<<63 {
|
if yi >= 1<<63 {
|
||||||
return Exp(y * Log(x))
|
// yi is a large even int that will lead to overflow (or underflow to 0)
|
||||||
|
// for all x except -1 (x == 1 was handled earlier)
|
||||||
|
switch {
|
||||||
|
case x == -1:
|
||||||
|
return 1
|
||||||
|
case (Abs(x) < 1) == (y > 0):
|
||||||
|
return 0
|
||||||
|
default:
|
||||||
|
return Inf(1)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// ans = a1 * 2**ae (= 1 for now).
|
// ans = a1 * 2**ae (= 1 for now).
|
||||||
@ -116,6 +125,15 @@ func pow(x, y float64) float64 {
|
|||||||
// accumulate powers of two into exp.
|
// accumulate powers of two into exp.
|
||||||
x1, xe := Frexp(x)
|
x1, xe := Frexp(x)
|
||||||
for i := int64(yi); i != 0; i >>= 1 {
|
for i := int64(yi); i != 0; i >>= 1 {
|
||||||
|
if xe < -1<<12 || 1<<12 < xe {
|
||||||
|
// catch xe before it overflows the left shift below
|
||||||
|
// Since i !=0 it has at least one bit still set, so ae will accumulate xe
|
||||||
|
// on at least one more iteration, ae += xe is a lower bound on ae
|
||||||
|
// the lower bound on ae exceeds the size of a float64 exp
|
||||||
|
// so the final call to Ldexp will produce under/overflow (0/Inf)
|
||||||
|
ae += xe
|
||||||
|
break
|
||||||
|
}
|
||||||
if i&1 == 1 {
|
if i&1 == 1 {
|
||||||
a1 *= x1
|
a1 *= x1
|
||||||
ae += xe
|
ae += xe
|
||||||
|
Loading…
Reference in New Issue
Block a user