1
0
mirror of https://github.com/golang/go synced 2024-11-23 00:00:07 -07:00

image/jpeg: move the level-shift and clip out of the idct function,

to be consistent with the fdct function, and to ease any future
idct rewrites in assembly.

The BenchmarkIDCT delta is obviously just an accounting change and not
a real saving, but it does give an indication of what proportion of
time was spent in the actual IDCT and what proportion was in shift and
clip. The idct time taken is now comparable to fdct.

The BenchmarkFDCT delta is an estimate of benchmark noise.

benchmark                   old ns/op    new ns/op    delta
BenchmarkFDCT                    3842         3837   -0.13%
BenchmarkIDCT                    5611         3478  -38.01%
BenchmarkDecodeRGBOpaque      2932785      2929751   -0.10%

R=r
CC=golang-dev
https://golang.org/cl/6625057
This commit is contained in:
Nigel Tao 2012-10-07 11:32:02 +11:00
parent f2444f0bc1
commit 0b9fe6d24e
3 changed files with 32 additions and 39 deletions

View File

@ -12,7 +12,7 @@ import (
"testing"
)
func BenchmarkFDCT(b *testing.B) {
func benchmarkDCT(b *testing.B, f func(*block)) {
b.StopTimer()
blocks := make([]block, 0, b.N*len(testBlocks))
for i := 0; i < b.N; i++ {
@ -20,21 +20,16 @@ func BenchmarkFDCT(b *testing.B) {
}
b.StartTimer()
for i := range blocks {
fdct(&blocks[i])
f(&blocks[i])
}
}
func BenchmarkFDCT(b *testing.B) {
benchmarkDCT(b, fdct)
}
func BenchmarkIDCT(b *testing.B) {
b.StopTimer()
dummy := make([]byte, 64)
blocks := make([]block, 0, b.N*len(testBlocks))
for i := 0; i < b.N; i++ {
blocks = append(blocks, testBlocks[:]...)
}
b.StartTimer()
for i := range blocks {
idct(dummy, 8, &blocks[i])
}
benchmarkDCT(b, idct)
}
func TestDCT(t *testing.T) {
@ -85,10 +80,9 @@ func TestDCT(t *testing.T) {
}
// Check that the optimized and slow IDCT implementations agree.
dummy := make([]byte, 64)
for i, b := range blocks {
got, want := b, b
idct(dummy, 8, &got)
idct(&got)
slowIDCT(&want)
if differ(&got, &want) {
t.Errorf("i=%d: IDCT\nsrc\n%s\ngot\n%s\nwant\n%s\n", i, &b, &got, &want)

View File

@ -59,9 +59,7 @@ const (
r2 = 181 // 256/sqrt(2)
)
// idct performs a 2-D Inverse Discrete Cosine Transformation, followed by a
// +128 level shift and a clip to [0, 255], writing the results to dst.
// stride is the number of elements between successive rows of dst.
// idct performs a 2-D Inverse Discrete Cosine Transformation.
//
// The input coefficients should already have been multiplied by the
// appropriate quantization table. We use fixed-point computation, with the
@ -71,7 +69,7 @@ const (
// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
// discrete W transform and for the discrete Fourier transform", IEEE Trans. on
// ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
func idct(dst []byte, stride int, src *block) {
func idct(src *block) {
// Horizontal 1-D IDCT.
for y := 0; y < 8; y++ {
y8 := y * 8
@ -191,21 +189,4 @@ func idct(dst []byte, stride int, src *block) {
src[8*6+x] = (y3 - y2) >> 14
src[8*7+x] = (y7 - y1) >> 14
}
// Level shift by +128, clip to [0, 255], and write to dst.
for y := 0; y < 8; y++ {
y8 := y * 8
yStride := y * stride
for x := 0; x < 8; x++ {
c := src[y8+x]
if c < -128 {
c = 0
} else if c > 127 {
c = 255
} else {
c += 128
}
dst[yStride+x] = uint8(c)
}
}
}

View File

@ -309,8 +309,10 @@ func (d *decoder) processSOS(n int) error {
}
// Perform the inverse DCT and store the MCU component to the image.
idct(&b)
dst, stride := []byte(nil), 0
if d.nComp == nGrayComponent {
idct(d.img1.Pix[8*(my*d.img1.Stride+mx):], d.img1.Stride, &b)
dst, stride = d.img1.Pix[8*(my*d.img1.Stride+mx):], d.img1.Stride
} else {
switch i {
case 0:
@ -321,11 +323,27 @@ func (d *decoder) processSOS(n int) error {
mx0 += j % 2
my0 += j / 2
}
idct(d.img3.Y[8*(my0*d.img3.YStride+mx0):], d.img3.YStride, &b)
dst, stride = d.img3.Y[8*(my0*d.img3.YStride+mx0):], d.img3.YStride
case 1:
idct(d.img3.Cb[8*(my*d.img3.CStride+mx):], d.img3.CStride, &b)
dst, stride = d.img3.Cb[8*(my*d.img3.CStride+mx):], d.img3.CStride
case 2:
idct(d.img3.Cr[8*(my*d.img3.CStride+mx):], d.img3.CStride, &b)
dst, stride = d.img3.Cr[8*(my*d.img3.CStride+mx):], d.img3.CStride
}
}
// Level shift by +128, clip to [0, 255], and write to dst.
for y := 0; y < 8; y++ {
y8 := y * 8
yStride := y * stride
for x := 0; x < 8; x++ {
c := b[y8+x]
if c < -128 {
c = 0
} else if c > 127 {
c = 255
} else {
c += 128
}
dst[yStride+x] = uint8(c)
}
}
} // for j