mirror of
https://github.com/golang/go
synced 2024-11-23 07:20:06 -07:00
crypto/elliptic: split up P-256 field and group ops
This makes Gerrit recognize the rename of the field implementation and facilitates the review. No code changes. For #52182 Change-Id: I827004e175db1ae2fcdf17d0f586ff21503d27e3 Reviewed-on: https://go-review.googlesource.com/c/go/+/390754 Reviewed-by: Ian Lance Taylor <iant@google.com> Reviewed-by: Russ Cox <rsc@golang.org> Reviewed-by: Roland Shoemaker <roland@golang.org> Run-TryBot: Filippo Valsorda <filippo@golang.org> Auto-Submit: Filippo Valsorda <filippo@golang.org> TryBot-Result: Gopher Robot <gobot@golang.org>
This commit is contained in:
parent
f0c0e0f255
commit
0b5218cf4e
@ -57,38 +57,6 @@ func (p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int)
|
|||||||
return p256ToAffine(&x1, &y1, &z1)
|
return p256ToAffine(&x1, &y1, &z1)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Field elements are represented as nine, unsigned 32-bit words.
|
|
||||||
//
|
|
||||||
// The value of a field element is:
|
|
||||||
// x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
|
|
||||||
//
|
|
||||||
// That is, each limb is alternately 29 or 28-bits wide in little-endian
|
|
||||||
// order.
|
|
||||||
//
|
|
||||||
// This means that a field element hits 2**257, rather than 2**256 as we would
|
|
||||||
// like. A 28, 29, ... pattern would cause us to hit 2**256, but that causes
|
|
||||||
// problems when multiplying as terms end up one bit short of a limb which
|
|
||||||
// would require much bit-shifting to correct.
|
|
||||||
//
|
|
||||||
// Finally, the values stored in a field element are in Montgomery form. So the
|
|
||||||
// value |y| is stored as (y*R) mod p, where p is the P-256 prime and R is
|
|
||||||
// 2**257.
|
|
||||||
|
|
||||||
const (
|
|
||||||
p256Limbs = 9
|
|
||||||
bottom29Bits = 0x1fffffff
|
|
||||||
)
|
|
||||||
|
|
||||||
var (
|
|
||||||
// p256One is the number 1 as a field element.
|
|
||||||
p256One = [p256Limbs]uint32{2, 0, 0, 0xffff800, 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, 0}
|
|
||||||
p256Zero = [p256Limbs]uint32{0, 0, 0, 0, 0, 0, 0, 0, 0}
|
|
||||||
// p256P is the prime modulus as a field element.
|
|
||||||
p256P = [p256Limbs]uint32{0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, 0, 0, 0x200000, 0xf000000, 0xfffffff}
|
|
||||||
// p2562P is the twice prime modulus as a field element.
|
|
||||||
p2562P = [p256Limbs]uint32{0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, 0, 0, 0x400000, 0xe000000, 0x1fffffff}
|
|
||||||
)
|
|
||||||
|
|
||||||
// p256Precomputed contains precomputed values to aid the calculation of scalar
|
// p256Precomputed contains precomputed values to aid the calculation of scalar
|
||||||
// multiples of the base point, G. It's actually two, equal length, tables
|
// multiples of the base point, G. It's actually two, equal length, tables
|
||||||
// concatenated.
|
// concatenated.
|
||||||
@ -181,613 +149,6 @@ var p256Precomputed = [p256Limbs * 2 * 15 * 2]uint32{
|
|||||||
0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
|
0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
|
||||||
}
|
}
|
||||||
|
|
||||||
// Field element operations:
|
|
||||||
|
|
||||||
const bottom28Bits = 0xfffffff
|
|
||||||
|
|
||||||
// nonZeroToAllOnes returns:
|
|
||||||
//
|
|
||||||
// 0xffffffff for 0 < x <= 2**31
|
|
||||||
// 0 for x == 0 or x > 2**31.
|
|
||||||
func nonZeroToAllOnes(x uint32) uint32 {
|
|
||||||
return ((x - 1) >> 31) - 1
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256ReduceCarry adds a multiple of p in order to cancel |carry|,
|
|
||||||
// which is a term at 2**257.
|
|
||||||
//
|
|
||||||
// On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
|
|
||||||
// On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29.
|
|
||||||
func p256ReduceCarry(inout *[p256Limbs]uint32, carry uint32) {
|
|
||||||
carry_mask := nonZeroToAllOnes(carry)
|
|
||||||
|
|
||||||
inout[0] += carry << 1
|
|
||||||
inout[3] += 0x10000000 & carry_mask
|
|
||||||
// carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
|
|
||||||
// previous line therefore this doesn't underflow.
|
|
||||||
inout[3] -= carry << 11
|
|
||||||
inout[4] += (0x20000000 - 1) & carry_mask
|
|
||||||
inout[5] += (0x10000000 - 1) & carry_mask
|
|
||||||
inout[6] += (0x20000000 - 1) & carry_mask
|
|
||||||
inout[6] -= carry << 22
|
|
||||||
// This may underflow if carry is non-zero but, if so, we'll fix it in the
|
|
||||||
// next line.
|
|
||||||
inout[7] -= 1 & carry_mask
|
|
||||||
inout[7] += carry << 25
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256Sum sets out = in+in2.
|
|
||||||
//
|
|
||||||
// On entry: in[i]+in2[i] must not overflow a 32-bit word.
|
|
||||||
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
func p256Sum(out, in, in2 *[p256Limbs]uint32) {
|
|
||||||
carry := uint32(0)
|
|
||||||
for i := 0; ; i++ {
|
|
||||||
out[i] = in[i] + in2[i]
|
|
||||||
out[i] += carry
|
|
||||||
carry = out[i] >> 29
|
|
||||||
out[i] &= bottom29Bits
|
|
||||||
|
|
||||||
i++
|
|
||||||
if i == p256Limbs {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
|
|
||||||
out[i] = in[i] + in2[i]
|
|
||||||
out[i] += carry
|
|
||||||
carry = out[i] >> 28
|
|
||||||
out[i] &= bottom28Bits
|
|
||||||
}
|
|
||||||
|
|
||||||
p256ReduceCarry(out, carry)
|
|
||||||
}
|
|
||||||
|
|
||||||
const (
|
|
||||||
two30m2 = 1<<30 - 1<<2
|
|
||||||
two30p13m2 = 1<<30 + 1<<13 - 1<<2
|
|
||||||
two31m2 = 1<<31 - 1<<2
|
|
||||||
two31m3 = 1<<31 - 1<<3
|
|
||||||
two31p24m2 = 1<<31 + 1<<24 - 1<<2
|
|
||||||
two30m27m2 = 1<<30 - 1<<27 - 1<<2
|
|
||||||
)
|
|
||||||
|
|
||||||
// p256Zero31 is 0 mod p.
|
|
||||||
var p256Zero31 = [p256Limbs]uint32{two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2}
|
|
||||||
|
|
||||||
// p256Diff sets out = in-in2.
|
|
||||||
//
|
|
||||||
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
|
|
||||||
// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
|
|
||||||
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
func p256Diff(out, in, in2 *[p256Limbs]uint32) {
|
|
||||||
var carry uint32
|
|
||||||
|
|
||||||
for i := 0; ; i++ {
|
|
||||||
out[i] = in[i] - in2[i]
|
|
||||||
out[i] += p256Zero31[i]
|
|
||||||
out[i] += carry
|
|
||||||
carry = out[i] >> 29
|
|
||||||
out[i] &= bottom29Bits
|
|
||||||
|
|
||||||
i++
|
|
||||||
if i == p256Limbs {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
|
|
||||||
out[i] = in[i] - in2[i]
|
|
||||||
out[i] += p256Zero31[i]
|
|
||||||
out[i] += carry
|
|
||||||
carry = out[i] >> 28
|
|
||||||
out[i] &= bottom28Bits
|
|
||||||
}
|
|
||||||
|
|
||||||
p256ReduceCarry(out, carry)
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256ReduceDegree sets out = tmp/R mod p where tmp contains 64-bit words with
|
|
||||||
// the same 29,28,... bit positions as a field element.
|
|
||||||
//
|
|
||||||
// The values in field elements are in Montgomery form: x*R mod p where R =
|
|
||||||
// 2**257. Since we just multiplied two Montgomery values together, the result
|
|
||||||
// is x*y*R*R mod p. We wish to divide by R in order for the result also to be
|
|
||||||
// in Montgomery form.
|
|
||||||
//
|
|
||||||
// On entry: tmp[i] < 2**64.
|
|
||||||
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
func p256ReduceDegree(out *[p256Limbs]uint32, tmp [17]uint64) {
|
|
||||||
// The following table may be helpful when reading this code:
|
|
||||||
//
|
|
||||||
// Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
|
|
||||||
// Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
|
|
||||||
// Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
|
|
||||||
// (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285
|
|
||||||
var tmp2 [18]uint32
|
|
||||||
var carry, x, xMask uint32
|
|
||||||
|
|
||||||
// tmp contains 64-bit words with the same 29,28,29-bit positions as a
|
|
||||||
// field element. So the top of an element of tmp might overlap with
|
|
||||||
// another element two positions down. The following loop eliminates
|
|
||||||
// this overlap.
|
|
||||||
tmp2[0] = uint32(tmp[0]) & bottom29Bits
|
|
||||||
|
|
||||||
tmp2[1] = uint32(tmp[0]) >> 29
|
|
||||||
tmp2[1] |= (uint32(tmp[0]>>32) << 3) & bottom28Bits
|
|
||||||
tmp2[1] += uint32(tmp[1]) & bottom28Bits
|
|
||||||
carry = tmp2[1] >> 28
|
|
||||||
tmp2[1] &= bottom28Bits
|
|
||||||
|
|
||||||
for i := 2; i < 17; i++ {
|
|
||||||
tmp2[i] = (uint32(tmp[i-2] >> 32)) >> 25
|
|
||||||
tmp2[i] += (uint32(tmp[i-1])) >> 28
|
|
||||||
tmp2[i] += (uint32(tmp[i-1]>>32) << 4) & bottom29Bits
|
|
||||||
tmp2[i] += uint32(tmp[i]) & bottom29Bits
|
|
||||||
tmp2[i] += carry
|
|
||||||
carry = tmp2[i] >> 29
|
|
||||||
tmp2[i] &= bottom29Bits
|
|
||||||
|
|
||||||
i++
|
|
||||||
if i == 17 {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
tmp2[i] = uint32(tmp[i-2]>>32) >> 25
|
|
||||||
tmp2[i] += uint32(tmp[i-1]) >> 29
|
|
||||||
tmp2[i] += ((uint32(tmp[i-1] >> 32)) << 3) & bottom28Bits
|
|
||||||
tmp2[i] += uint32(tmp[i]) & bottom28Bits
|
|
||||||
tmp2[i] += carry
|
|
||||||
carry = tmp2[i] >> 28
|
|
||||||
tmp2[i] &= bottom28Bits
|
|
||||||
}
|
|
||||||
|
|
||||||
tmp2[17] = uint32(tmp[15]>>32) >> 25
|
|
||||||
tmp2[17] += uint32(tmp[16]) >> 29
|
|
||||||
tmp2[17] += uint32(tmp[16]>>32) << 3
|
|
||||||
tmp2[17] += carry
|
|
||||||
|
|
||||||
// Montgomery elimination of terms:
|
|
||||||
//
|
|
||||||
// Since R is 2**257, we can divide by R with a bitwise shift if we can
|
|
||||||
// ensure that the right-most 257 bits are all zero. We can make that true
|
|
||||||
// by adding multiplies of p without affecting the value.
|
|
||||||
//
|
|
||||||
// So we eliminate limbs from right to left. Since the bottom 29 bits of p
|
|
||||||
// are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
|
|
||||||
// We can do that for 8 further limbs and then right shift to eliminate the
|
|
||||||
// extra factor of R.
|
|
||||||
for i := 0; ; i += 2 {
|
|
||||||
tmp2[i+1] += tmp2[i] >> 29
|
|
||||||
x = tmp2[i] & bottom29Bits
|
|
||||||
xMask = nonZeroToAllOnes(x)
|
|
||||||
tmp2[i] = 0
|
|
||||||
|
|
||||||
// The bounds calculations for this loop are tricky. Each iteration of
|
|
||||||
// the loop eliminates two words by adding values to words to their
|
|
||||||
// right.
|
|
||||||
//
|
|
||||||
// The following table contains the amounts added to each word (as an
|
|
||||||
// offset from the value of i at the top of the loop). The amounts are
|
|
||||||
// accounted for from the first and second half of the loop separately
|
|
||||||
// and are written as, for example, 28 to mean a value <2**28.
|
|
||||||
//
|
|
||||||
// Word: 3 4 5 6 7 8 9 10
|
|
||||||
// Added in top half: 28 11 29 21 29 28
|
|
||||||
// 28 29
|
|
||||||
// 29
|
|
||||||
// Added in bottom half: 29 10 28 21 28 28
|
|
||||||
// 29
|
|
||||||
//
|
|
||||||
// The value that is currently offset 7 will be offset 5 for the next
|
|
||||||
// iteration and then offset 3 for the iteration after that. Therefore
|
|
||||||
// the total value added will be the values added at 7, 5 and 3.
|
|
||||||
//
|
|
||||||
// The following table accumulates these values. The sums at the bottom
|
|
||||||
// are written as, for example, 29+28, to mean a value < 2**29+2**28.
|
|
||||||
//
|
|
||||||
// Word: 3 4 5 6 7 8 9 10 11 12 13
|
|
||||||
// 28 11 10 29 21 29 28 28 28 28 28
|
|
||||||
// 29 28 11 28 29 28 29 28 29 28
|
|
||||||
// 29 28 21 21 29 21 29 21
|
|
||||||
// 10 29 28 21 28 21 28
|
|
||||||
// 28 29 28 29 28 29 28
|
|
||||||
// 11 10 29 10 29 10
|
|
||||||
// 29 28 11 28 11
|
|
||||||
// 29 29
|
|
||||||
// --------------------------------------------
|
|
||||||
// 30+ 31+ 30+ 31+ 30+
|
|
||||||
// 28+ 29+ 28+ 29+ 21+
|
|
||||||
// 21+ 28+ 21+ 28+ 10
|
|
||||||
// 10 21+ 10 21+
|
|
||||||
// 11 11
|
|
||||||
//
|
|
||||||
// So the greatest amount is added to tmp2[10] and tmp2[12]. If
|
|
||||||
// tmp2[10/12] has an initial value of <2**29, then the maximum value
|
|
||||||
// will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
|
|
||||||
// as required.
|
|
||||||
tmp2[i+3] += (x << 10) & bottom28Bits
|
|
||||||
tmp2[i+4] += (x >> 18)
|
|
||||||
|
|
||||||
tmp2[i+6] += (x << 21) & bottom29Bits
|
|
||||||
tmp2[i+7] += x >> 8
|
|
||||||
|
|
||||||
// At position 200, which is the starting bit position for word 7, we
|
|
||||||
// have a factor of 0xf000000 = 2**28 - 2**24.
|
|
||||||
tmp2[i+7] += 0x10000000 & xMask
|
|
||||||
tmp2[i+8] += (x - 1) & xMask
|
|
||||||
tmp2[i+7] -= (x << 24) & bottom28Bits
|
|
||||||
tmp2[i+8] -= x >> 4
|
|
||||||
|
|
||||||
tmp2[i+8] += 0x20000000 & xMask
|
|
||||||
tmp2[i+8] -= x
|
|
||||||
tmp2[i+8] += (x << 28) & bottom29Bits
|
|
||||||
tmp2[i+9] += ((x >> 1) - 1) & xMask
|
|
||||||
|
|
||||||
if i+1 == p256Limbs {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
tmp2[i+2] += tmp2[i+1] >> 28
|
|
||||||
x = tmp2[i+1] & bottom28Bits
|
|
||||||
xMask = nonZeroToAllOnes(x)
|
|
||||||
tmp2[i+1] = 0
|
|
||||||
|
|
||||||
tmp2[i+4] += (x << 11) & bottom29Bits
|
|
||||||
tmp2[i+5] += (x >> 18)
|
|
||||||
|
|
||||||
tmp2[i+7] += (x << 21) & bottom28Bits
|
|
||||||
tmp2[i+8] += x >> 7
|
|
||||||
|
|
||||||
// At position 199, which is the starting bit of the 8th word when
|
|
||||||
// dealing with a context starting on an odd word, we have a factor of
|
|
||||||
// 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
|
|
||||||
// word from i+1 is i+8.
|
|
||||||
tmp2[i+8] += 0x20000000 & xMask
|
|
||||||
tmp2[i+9] += (x - 1) & xMask
|
|
||||||
tmp2[i+8] -= (x << 25) & bottom29Bits
|
|
||||||
tmp2[i+9] -= x >> 4
|
|
||||||
|
|
||||||
tmp2[i+9] += 0x10000000 & xMask
|
|
||||||
tmp2[i+9] -= x
|
|
||||||
tmp2[i+10] += (x - 1) & xMask
|
|
||||||
}
|
|
||||||
|
|
||||||
// We merge the right shift with a carry chain. The words above 2**257 have
|
|
||||||
// widths of 28,29,... which we need to correct when copying them down.
|
|
||||||
carry = 0
|
|
||||||
for i := 0; i < 8; i++ {
|
|
||||||
// The maximum value of tmp2[i + 9] occurs on the first iteration and
|
|
||||||
// is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
|
|
||||||
// therefore safe.
|
|
||||||
out[i] = tmp2[i+9]
|
|
||||||
out[i] += carry
|
|
||||||
out[i] += (tmp2[i+10] << 28) & bottom29Bits
|
|
||||||
carry = out[i] >> 29
|
|
||||||
out[i] &= bottom29Bits
|
|
||||||
|
|
||||||
i++
|
|
||||||
out[i] = tmp2[i+9] >> 1
|
|
||||||
out[i] += carry
|
|
||||||
carry = out[i] >> 28
|
|
||||||
out[i] &= bottom28Bits
|
|
||||||
}
|
|
||||||
|
|
||||||
out[8] = tmp2[17]
|
|
||||||
out[8] += carry
|
|
||||||
carry = out[8] >> 29
|
|
||||||
out[8] &= bottom29Bits
|
|
||||||
|
|
||||||
p256ReduceCarry(out, carry)
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256Square sets out=in*in.
|
|
||||||
//
|
|
||||||
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
|
|
||||||
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
func p256Square(out, in *[p256Limbs]uint32) {
|
|
||||||
var tmp [17]uint64
|
|
||||||
|
|
||||||
tmp[0] = uint64(in[0]) * uint64(in[0])
|
|
||||||
tmp[1] = uint64(in[0]) * (uint64(in[1]) << 1)
|
|
||||||
tmp[2] = uint64(in[0])*(uint64(in[2])<<1) +
|
|
||||||
uint64(in[1])*(uint64(in[1])<<1)
|
|
||||||
tmp[3] = uint64(in[0])*(uint64(in[3])<<1) +
|
|
||||||
uint64(in[1])*(uint64(in[2])<<1)
|
|
||||||
tmp[4] = uint64(in[0])*(uint64(in[4])<<1) +
|
|
||||||
uint64(in[1])*(uint64(in[3])<<2) +
|
|
||||||
uint64(in[2])*uint64(in[2])
|
|
||||||
tmp[5] = uint64(in[0])*(uint64(in[5])<<1) +
|
|
||||||
uint64(in[1])*(uint64(in[4])<<1) +
|
|
||||||
uint64(in[2])*(uint64(in[3])<<1)
|
|
||||||
tmp[6] = uint64(in[0])*(uint64(in[6])<<1) +
|
|
||||||
uint64(in[1])*(uint64(in[5])<<2) +
|
|
||||||
uint64(in[2])*(uint64(in[4])<<1) +
|
|
||||||
uint64(in[3])*(uint64(in[3])<<1)
|
|
||||||
tmp[7] = uint64(in[0])*(uint64(in[7])<<1) +
|
|
||||||
uint64(in[1])*(uint64(in[6])<<1) +
|
|
||||||
uint64(in[2])*(uint64(in[5])<<1) +
|
|
||||||
uint64(in[3])*(uint64(in[4])<<1)
|
|
||||||
// tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
|
|
||||||
// which is < 2**64 as required.
|
|
||||||
tmp[8] = uint64(in[0])*(uint64(in[8])<<1) +
|
|
||||||
uint64(in[1])*(uint64(in[7])<<2) +
|
|
||||||
uint64(in[2])*(uint64(in[6])<<1) +
|
|
||||||
uint64(in[3])*(uint64(in[5])<<2) +
|
|
||||||
uint64(in[4])*uint64(in[4])
|
|
||||||
tmp[9] = uint64(in[1])*(uint64(in[8])<<1) +
|
|
||||||
uint64(in[2])*(uint64(in[7])<<1) +
|
|
||||||
uint64(in[3])*(uint64(in[6])<<1) +
|
|
||||||
uint64(in[4])*(uint64(in[5])<<1)
|
|
||||||
tmp[10] = uint64(in[2])*(uint64(in[8])<<1) +
|
|
||||||
uint64(in[3])*(uint64(in[7])<<2) +
|
|
||||||
uint64(in[4])*(uint64(in[6])<<1) +
|
|
||||||
uint64(in[5])*(uint64(in[5])<<1)
|
|
||||||
tmp[11] = uint64(in[3])*(uint64(in[8])<<1) +
|
|
||||||
uint64(in[4])*(uint64(in[7])<<1) +
|
|
||||||
uint64(in[5])*(uint64(in[6])<<1)
|
|
||||||
tmp[12] = uint64(in[4])*(uint64(in[8])<<1) +
|
|
||||||
uint64(in[5])*(uint64(in[7])<<2) +
|
|
||||||
uint64(in[6])*uint64(in[6])
|
|
||||||
tmp[13] = uint64(in[5])*(uint64(in[8])<<1) +
|
|
||||||
uint64(in[6])*(uint64(in[7])<<1)
|
|
||||||
tmp[14] = uint64(in[6])*(uint64(in[8])<<1) +
|
|
||||||
uint64(in[7])*(uint64(in[7])<<1)
|
|
||||||
tmp[15] = uint64(in[7]) * (uint64(in[8]) << 1)
|
|
||||||
tmp[16] = uint64(in[8]) * uint64(in[8])
|
|
||||||
|
|
||||||
p256ReduceDegree(out, tmp)
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256Mul sets out=in*in2.
|
|
||||||
//
|
|
||||||
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
|
|
||||||
// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
|
|
||||||
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
func p256Mul(out, in, in2 *[p256Limbs]uint32) {
|
|
||||||
var tmp [17]uint64
|
|
||||||
|
|
||||||
tmp[0] = uint64(in[0]) * uint64(in2[0])
|
|
||||||
tmp[1] = uint64(in[0])*(uint64(in2[1])<<0) +
|
|
||||||
uint64(in[1])*(uint64(in2[0])<<0)
|
|
||||||
tmp[2] = uint64(in[0])*(uint64(in2[2])<<0) +
|
|
||||||
uint64(in[1])*(uint64(in2[1])<<1) +
|
|
||||||
uint64(in[2])*(uint64(in2[0])<<0)
|
|
||||||
tmp[3] = uint64(in[0])*(uint64(in2[3])<<0) +
|
|
||||||
uint64(in[1])*(uint64(in2[2])<<0) +
|
|
||||||
uint64(in[2])*(uint64(in2[1])<<0) +
|
|
||||||
uint64(in[3])*(uint64(in2[0])<<0)
|
|
||||||
tmp[4] = uint64(in[0])*(uint64(in2[4])<<0) +
|
|
||||||
uint64(in[1])*(uint64(in2[3])<<1) +
|
|
||||||
uint64(in[2])*(uint64(in2[2])<<0) +
|
|
||||||
uint64(in[3])*(uint64(in2[1])<<1) +
|
|
||||||
uint64(in[4])*(uint64(in2[0])<<0)
|
|
||||||
tmp[5] = uint64(in[0])*(uint64(in2[5])<<0) +
|
|
||||||
uint64(in[1])*(uint64(in2[4])<<0) +
|
|
||||||
uint64(in[2])*(uint64(in2[3])<<0) +
|
|
||||||
uint64(in[3])*(uint64(in2[2])<<0) +
|
|
||||||
uint64(in[4])*(uint64(in2[1])<<0) +
|
|
||||||
uint64(in[5])*(uint64(in2[0])<<0)
|
|
||||||
tmp[6] = uint64(in[0])*(uint64(in2[6])<<0) +
|
|
||||||
uint64(in[1])*(uint64(in2[5])<<1) +
|
|
||||||
uint64(in[2])*(uint64(in2[4])<<0) +
|
|
||||||
uint64(in[3])*(uint64(in2[3])<<1) +
|
|
||||||
uint64(in[4])*(uint64(in2[2])<<0) +
|
|
||||||
uint64(in[5])*(uint64(in2[1])<<1) +
|
|
||||||
uint64(in[6])*(uint64(in2[0])<<0)
|
|
||||||
tmp[7] = uint64(in[0])*(uint64(in2[7])<<0) +
|
|
||||||
uint64(in[1])*(uint64(in2[6])<<0) +
|
|
||||||
uint64(in[2])*(uint64(in2[5])<<0) +
|
|
||||||
uint64(in[3])*(uint64(in2[4])<<0) +
|
|
||||||
uint64(in[4])*(uint64(in2[3])<<0) +
|
|
||||||
uint64(in[5])*(uint64(in2[2])<<0) +
|
|
||||||
uint64(in[6])*(uint64(in2[1])<<0) +
|
|
||||||
uint64(in[7])*(uint64(in2[0])<<0)
|
|
||||||
// tmp[8] has the greatest value but doesn't overflow. See logic in
|
|
||||||
// p256Square.
|
|
||||||
tmp[8] = uint64(in[0])*(uint64(in2[8])<<0) +
|
|
||||||
uint64(in[1])*(uint64(in2[7])<<1) +
|
|
||||||
uint64(in[2])*(uint64(in2[6])<<0) +
|
|
||||||
uint64(in[3])*(uint64(in2[5])<<1) +
|
|
||||||
uint64(in[4])*(uint64(in2[4])<<0) +
|
|
||||||
uint64(in[5])*(uint64(in2[3])<<1) +
|
|
||||||
uint64(in[6])*(uint64(in2[2])<<0) +
|
|
||||||
uint64(in[7])*(uint64(in2[1])<<1) +
|
|
||||||
uint64(in[8])*(uint64(in2[0])<<0)
|
|
||||||
tmp[9] = uint64(in[1])*(uint64(in2[8])<<0) +
|
|
||||||
uint64(in[2])*(uint64(in2[7])<<0) +
|
|
||||||
uint64(in[3])*(uint64(in2[6])<<0) +
|
|
||||||
uint64(in[4])*(uint64(in2[5])<<0) +
|
|
||||||
uint64(in[5])*(uint64(in2[4])<<0) +
|
|
||||||
uint64(in[6])*(uint64(in2[3])<<0) +
|
|
||||||
uint64(in[7])*(uint64(in2[2])<<0) +
|
|
||||||
uint64(in[8])*(uint64(in2[1])<<0)
|
|
||||||
tmp[10] = uint64(in[2])*(uint64(in2[8])<<0) +
|
|
||||||
uint64(in[3])*(uint64(in2[7])<<1) +
|
|
||||||
uint64(in[4])*(uint64(in2[6])<<0) +
|
|
||||||
uint64(in[5])*(uint64(in2[5])<<1) +
|
|
||||||
uint64(in[6])*(uint64(in2[4])<<0) +
|
|
||||||
uint64(in[7])*(uint64(in2[3])<<1) +
|
|
||||||
uint64(in[8])*(uint64(in2[2])<<0)
|
|
||||||
tmp[11] = uint64(in[3])*(uint64(in2[8])<<0) +
|
|
||||||
uint64(in[4])*(uint64(in2[7])<<0) +
|
|
||||||
uint64(in[5])*(uint64(in2[6])<<0) +
|
|
||||||
uint64(in[6])*(uint64(in2[5])<<0) +
|
|
||||||
uint64(in[7])*(uint64(in2[4])<<0) +
|
|
||||||
uint64(in[8])*(uint64(in2[3])<<0)
|
|
||||||
tmp[12] = uint64(in[4])*(uint64(in2[8])<<0) +
|
|
||||||
uint64(in[5])*(uint64(in2[7])<<1) +
|
|
||||||
uint64(in[6])*(uint64(in2[6])<<0) +
|
|
||||||
uint64(in[7])*(uint64(in2[5])<<1) +
|
|
||||||
uint64(in[8])*(uint64(in2[4])<<0)
|
|
||||||
tmp[13] = uint64(in[5])*(uint64(in2[8])<<0) +
|
|
||||||
uint64(in[6])*(uint64(in2[7])<<0) +
|
|
||||||
uint64(in[7])*(uint64(in2[6])<<0) +
|
|
||||||
uint64(in[8])*(uint64(in2[5])<<0)
|
|
||||||
tmp[14] = uint64(in[6])*(uint64(in2[8])<<0) +
|
|
||||||
uint64(in[7])*(uint64(in2[7])<<1) +
|
|
||||||
uint64(in[8])*(uint64(in2[6])<<0)
|
|
||||||
tmp[15] = uint64(in[7])*(uint64(in2[8])<<0) +
|
|
||||||
uint64(in[8])*(uint64(in2[7])<<0)
|
|
||||||
tmp[16] = uint64(in[8]) * (uint64(in2[8]) << 0)
|
|
||||||
|
|
||||||
p256ReduceDegree(out, tmp)
|
|
||||||
}
|
|
||||||
|
|
||||||
func p256Assign(out, in *[p256Limbs]uint32) {
|
|
||||||
*out = *in
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256Invert calculates |out| = |in|^{-1}
|
|
||||||
//
|
|
||||||
// Based on Fermat's Little Theorem:
|
|
||||||
//
|
|
||||||
// a^p = a (mod p)
|
|
||||||
// a^{p-1} = 1 (mod p)
|
|
||||||
// a^{p-2} = a^{-1} (mod p)
|
|
||||||
func p256Invert(out, in *[p256Limbs]uint32) {
|
|
||||||
var ftmp, ftmp2 [p256Limbs]uint32
|
|
||||||
|
|
||||||
// each e_I will hold |in|^{2^I - 1}
|
|
||||||
var e2, e4, e8, e16, e32, e64 [p256Limbs]uint32
|
|
||||||
|
|
||||||
p256Square(&ftmp, in) // 2^1
|
|
||||||
p256Mul(&ftmp, in, &ftmp) // 2^2 - 2^0
|
|
||||||
p256Assign(&e2, &ftmp)
|
|
||||||
p256Square(&ftmp, &ftmp) // 2^3 - 2^1
|
|
||||||
p256Square(&ftmp, &ftmp) // 2^4 - 2^2
|
|
||||||
p256Mul(&ftmp, &ftmp, &e2) // 2^4 - 2^0
|
|
||||||
p256Assign(&e4, &ftmp)
|
|
||||||
p256Square(&ftmp, &ftmp) // 2^5 - 2^1
|
|
||||||
p256Square(&ftmp, &ftmp) // 2^6 - 2^2
|
|
||||||
p256Square(&ftmp, &ftmp) // 2^7 - 2^3
|
|
||||||
p256Square(&ftmp, &ftmp) // 2^8 - 2^4
|
|
||||||
p256Mul(&ftmp, &ftmp, &e4) // 2^8 - 2^0
|
|
||||||
p256Assign(&e8, &ftmp)
|
|
||||||
for i := 0; i < 8; i++ {
|
|
||||||
p256Square(&ftmp, &ftmp)
|
|
||||||
} // 2^16 - 2^8
|
|
||||||
p256Mul(&ftmp, &ftmp, &e8) // 2^16 - 2^0
|
|
||||||
p256Assign(&e16, &ftmp)
|
|
||||||
for i := 0; i < 16; i++ {
|
|
||||||
p256Square(&ftmp, &ftmp)
|
|
||||||
} // 2^32 - 2^16
|
|
||||||
p256Mul(&ftmp, &ftmp, &e16) // 2^32 - 2^0
|
|
||||||
p256Assign(&e32, &ftmp)
|
|
||||||
for i := 0; i < 32; i++ {
|
|
||||||
p256Square(&ftmp, &ftmp)
|
|
||||||
} // 2^64 - 2^32
|
|
||||||
p256Assign(&e64, &ftmp)
|
|
||||||
p256Mul(&ftmp, &ftmp, in) // 2^64 - 2^32 + 2^0
|
|
||||||
for i := 0; i < 192; i++ {
|
|
||||||
p256Square(&ftmp, &ftmp)
|
|
||||||
} // 2^256 - 2^224 + 2^192
|
|
||||||
|
|
||||||
p256Mul(&ftmp2, &e64, &e32) // 2^64 - 2^0
|
|
||||||
for i := 0; i < 16; i++ {
|
|
||||||
p256Square(&ftmp2, &ftmp2)
|
|
||||||
} // 2^80 - 2^16
|
|
||||||
p256Mul(&ftmp2, &ftmp2, &e16) // 2^80 - 2^0
|
|
||||||
for i := 0; i < 8; i++ {
|
|
||||||
p256Square(&ftmp2, &ftmp2)
|
|
||||||
} // 2^88 - 2^8
|
|
||||||
p256Mul(&ftmp2, &ftmp2, &e8) // 2^88 - 2^0
|
|
||||||
for i := 0; i < 4; i++ {
|
|
||||||
p256Square(&ftmp2, &ftmp2)
|
|
||||||
} // 2^92 - 2^4
|
|
||||||
p256Mul(&ftmp2, &ftmp2, &e4) // 2^92 - 2^0
|
|
||||||
p256Square(&ftmp2, &ftmp2) // 2^93 - 2^1
|
|
||||||
p256Square(&ftmp2, &ftmp2) // 2^94 - 2^2
|
|
||||||
p256Mul(&ftmp2, &ftmp2, &e2) // 2^94 - 2^0
|
|
||||||
p256Square(&ftmp2, &ftmp2) // 2^95 - 2^1
|
|
||||||
p256Square(&ftmp2, &ftmp2) // 2^96 - 2^2
|
|
||||||
p256Mul(&ftmp2, &ftmp2, in) // 2^96 - 3
|
|
||||||
|
|
||||||
p256Mul(out, &ftmp2, &ftmp) // 2^256 - 2^224 + 2^192 + 2^96 - 3
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256Scalar3 sets out=3*out.
|
|
||||||
//
|
|
||||||
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
func p256Scalar3(out *[p256Limbs]uint32) {
|
|
||||||
var carry uint32
|
|
||||||
|
|
||||||
for i := 0; ; i++ {
|
|
||||||
out[i] *= 3
|
|
||||||
out[i] += carry
|
|
||||||
carry = out[i] >> 29
|
|
||||||
out[i] &= bottom29Bits
|
|
||||||
|
|
||||||
i++
|
|
||||||
if i == p256Limbs {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
|
|
||||||
out[i] *= 3
|
|
||||||
out[i] += carry
|
|
||||||
carry = out[i] >> 28
|
|
||||||
out[i] &= bottom28Bits
|
|
||||||
}
|
|
||||||
|
|
||||||
p256ReduceCarry(out, carry)
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256Scalar4 sets out=4*out.
|
|
||||||
//
|
|
||||||
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
func p256Scalar4(out *[p256Limbs]uint32) {
|
|
||||||
var carry, nextCarry uint32
|
|
||||||
|
|
||||||
for i := 0; ; i++ {
|
|
||||||
nextCarry = out[i] >> 27
|
|
||||||
out[i] <<= 2
|
|
||||||
out[i] &= bottom29Bits
|
|
||||||
out[i] += carry
|
|
||||||
carry = nextCarry + (out[i] >> 29)
|
|
||||||
out[i] &= bottom29Bits
|
|
||||||
|
|
||||||
i++
|
|
||||||
if i == p256Limbs {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
nextCarry = out[i] >> 26
|
|
||||||
out[i] <<= 2
|
|
||||||
out[i] &= bottom28Bits
|
|
||||||
out[i] += carry
|
|
||||||
carry = nextCarry + (out[i] >> 28)
|
|
||||||
out[i] &= bottom28Bits
|
|
||||||
}
|
|
||||||
|
|
||||||
p256ReduceCarry(out, carry)
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256Scalar8 sets out=8*out.
|
|
||||||
//
|
|
||||||
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
|
||||||
func p256Scalar8(out *[p256Limbs]uint32) {
|
|
||||||
var carry, nextCarry uint32
|
|
||||||
|
|
||||||
for i := 0; ; i++ {
|
|
||||||
nextCarry = out[i] >> 26
|
|
||||||
out[i] <<= 3
|
|
||||||
out[i] &= bottom29Bits
|
|
||||||
out[i] += carry
|
|
||||||
carry = nextCarry + (out[i] >> 29)
|
|
||||||
out[i] &= bottom29Bits
|
|
||||||
|
|
||||||
i++
|
|
||||||
if i == p256Limbs {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
nextCarry = out[i] >> 25
|
|
||||||
out[i] <<= 3
|
|
||||||
out[i] &= bottom28Bits
|
|
||||||
out[i] += carry
|
|
||||||
carry = nextCarry + (out[i] >> 28)
|
|
||||||
out[i] &= bottom28Bits
|
|
||||||
}
|
|
||||||
|
|
||||||
p256ReduceCarry(out, carry)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Group operations:
|
// Group operations:
|
||||||
//
|
//
|
||||||
// Elements of the elliptic curve group are represented in Jacobian
|
// Elements of the elliptic curve group are represented in Jacobian
|
||||||
@ -908,16 +269,6 @@ func p256PointAdd(xOut, yOut, zOut, x1, y1, z1, x2, y2, z2 *[p256Limbs]uint32) {
|
|||||||
p256Diff(yOut, yOut, &tmp)
|
p256Diff(yOut, yOut, &tmp)
|
||||||
}
|
}
|
||||||
|
|
||||||
// p256CopyConditional sets out=in if mask = 0xffffffff in constant time.
|
|
||||||
//
|
|
||||||
// On entry: mask is either 0 or 0xffffffff.
|
|
||||||
func p256CopyConditional(out, in *[p256Limbs]uint32, mask uint32) {
|
|
||||||
for i := 0; i < p256Limbs; i++ {
|
|
||||||
tmp := mask & (in[i] ^ out[i])
|
|
||||||
out[i] ^= tmp
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256SelectAffinePoint sets {out_x,out_y} to the index'th entry of table.
|
// p256SelectAffinePoint sets {out_x,out_y} to the index'th entry of table.
|
||||||
//
|
//
|
||||||
// On entry: index < 16, table[0] must be zero.
|
// On entry: index < 16, table[0] must be zero.
|
||||||
@ -1124,50 +475,3 @@ func p256ScalarMult(xOut, yOut, zOut, x, y *[p256Limbs]uint32, scalar *[32]uint8
|
|||||||
nIsInfinityMask &^= pIsNoninfiniteMask
|
nIsInfinityMask &^= pIsNoninfiniteMask
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// p256FromBig sets out = R*in.
|
|
||||||
func p256FromBig(out *[p256Limbs]uint32, in *big.Int) {
|
|
||||||
tmp := new(big.Int).Lsh(in, 257)
|
|
||||||
tmp.Mod(tmp, p256Params.P)
|
|
||||||
|
|
||||||
for i := 0; i < p256Limbs; i++ {
|
|
||||||
if bits := tmp.Bits(); len(bits) > 0 {
|
|
||||||
out[i] = uint32(bits[0]) & bottom29Bits
|
|
||||||
} else {
|
|
||||||
out[i] = 0
|
|
||||||
}
|
|
||||||
tmp.Rsh(tmp, 29)
|
|
||||||
|
|
||||||
i++
|
|
||||||
if i == p256Limbs {
|
|
||||||
break
|
|
||||||
}
|
|
||||||
|
|
||||||
if bits := tmp.Bits(); len(bits) > 0 {
|
|
||||||
out[i] = uint32(bits[0]) & bottom28Bits
|
|
||||||
} else {
|
|
||||||
out[i] = 0
|
|
||||||
}
|
|
||||||
tmp.Rsh(tmp, 28)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// p256ToBig returns a *big.Int containing the value of in.
|
|
||||||
func p256ToBig(in *[p256Limbs]uint32) *big.Int {
|
|
||||||
result, tmp := new(big.Int), new(big.Int)
|
|
||||||
|
|
||||||
result.SetInt64(int64(in[p256Limbs-1]))
|
|
||||||
for i := p256Limbs - 2; i >= 0; i-- {
|
|
||||||
if (i & 1) == 0 {
|
|
||||||
result.Lsh(result, 29)
|
|
||||||
} else {
|
|
||||||
result.Lsh(result, 28)
|
|
||||||
}
|
|
||||||
tmp.SetInt64(int64(in[i]))
|
|
||||||
result.Add(result, tmp)
|
|
||||||
}
|
|
||||||
|
|
||||||
result.Mul(result, p256RInverse)
|
|
||||||
result.Mod(result, p256Params.P)
|
|
||||||
return result
|
|
||||||
}
|
|
||||||
|
705
src/crypto/elliptic/p256_generic_field.go
Normal file
705
src/crypto/elliptic/p256_generic_field.go
Normal file
@ -0,0 +1,705 @@
|
|||||||
|
// Copyright 2013 The Go Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
//go:build !amd64 && !arm64
|
||||||
|
|
||||||
|
package elliptic
|
||||||
|
|
||||||
|
import "math/big"
|
||||||
|
|
||||||
|
// Field elements are represented as nine, unsigned 32-bit words.
|
||||||
|
//
|
||||||
|
// The value of a field element is:
|
||||||
|
// x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
|
||||||
|
//
|
||||||
|
// That is, each limb is alternately 29 or 28-bits wide in little-endian
|
||||||
|
// order.
|
||||||
|
//
|
||||||
|
// This means that a field element hits 2**257, rather than 2**256 as we would
|
||||||
|
// like. A 28, 29, ... pattern would cause us to hit 2**256, but that causes
|
||||||
|
// problems when multiplying as terms end up one bit short of a limb which
|
||||||
|
// would require much bit-shifting to correct.
|
||||||
|
//
|
||||||
|
// Finally, the values stored in a field element are in Montgomery form. So the
|
||||||
|
// value |y| is stored as (y*R) mod p, where p is the P-256 prime and R is
|
||||||
|
// 2**257.
|
||||||
|
|
||||||
|
const (
|
||||||
|
p256Limbs = 9
|
||||||
|
bottom29Bits = 0x1fffffff
|
||||||
|
)
|
||||||
|
|
||||||
|
var (
|
||||||
|
// p256One is the number 1 as a field element.
|
||||||
|
p256One = [p256Limbs]uint32{2, 0, 0, 0xffff800, 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, 0}
|
||||||
|
p256Zero = [p256Limbs]uint32{0, 0, 0, 0, 0, 0, 0, 0, 0}
|
||||||
|
// p256P is the prime modulus as a field element.
|
||||||
|
p256P = [p256Limbs]uint32{0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, 0, 0, 0x200000, 0xf000000, 0xfffffff}
|
||||||
|
// p2562P is the twice prime modulus as a field element.
|
||||||
|
p2562P = [p256Limbs]uint32{0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, 0, 0, 0x400000, 0xe000000, 0x1fffffff}
|
||||||
|
)
|
||||||
|
|
||||||
|
// Field element operations:
|
||||||
|
|
||||||
|
const bottom28Bits = 0xfffffff
|
||||||
|
|
||||||
|
// nonZeroToAllOnes returns:
|
||||||
|
//
|
||||||
|
// 0xffffffff for 0 < x <= 2**31
|
||||||
|
// 0 for x == 0 or x > 2**31.
|
||||||
|
func nonZeroToAllOnes(x uint32) uint32 {
|
||||||
|
return ((x - 1) >> 31) - 1
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256ReduceCarry adds a multiple of p in order to cancel |carry|,
|
||||||
|
// which is a term at 2**257.
|
||||||
|
//
|
||||||
|
// On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
|
||||||
|
// On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29.
|
||||||
|
func p256ReduceCarry(inout *[p256Limbs]uint32, carry uint32) {
|
||||||
|
carry_mask := nonZeroToAllOnes(carry)
|
||||||
|
|
||||||
|
inout[0] += carry << 1
|
||||||
|
inout[3] += 0x10000000 & carry_mask
|
||||||
|
// carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
|
||||||
|
// previous line therefore this doesn't underflow.
|
||||||
|
inout[3] -= carry << 11
|
||||||
|
inout[4] += (0x20000000 - 1) & carry_mask
|
||||||
|
inout[5] += (0x10000000 - 1) & carry_mask
|
||||||
|
inout[6] += (0x20000000 - 1) & carry_mask
|
||||||
|
inout[6] -= carry << 22
|
||||||
|
// This may underflow if carry is non-zero but, if so, we'll fix it in the
|
||||||
|
// next line.
|
||||||
|
inout[7] -= 1 & carry_mask
|
||||||
|
inout[7] += carry << 25
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256Sum sets out = in+in2.
|
||||||
|
//
|
||||||
|
// On entry: in[i]+in2[i] must not overflow a 32-bit word.
|
||||||
|
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
func p256Sum(out, in, in2 *[p256Limbs]uint32) {
|
||||||
|
carry := uint32(0)
|
||||||
|
for i := 0; ; i++ {
|
||||||
|
out[i] = in[i] + in2[i]
|
||||||
|
out[i] += carry
|
||||||
|
carry = out[i] >> 29
|
||||||
|
out[i] &= bottom29Bits
|
||||||
|
|
||||||
|
i++
|
||||||
|
if i == p256Limbs {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
|
||||||
|
out[i] = in[i] + in2[i]
|
||||||
|
out[i] += carry
|
||||||
|
carry = out[i] >> 28
|
||||||
|
out[i] &= bottom28Bits
|
||||||
|
}
|
||||||
|
|
||||||
|
p256ReduceCarry(out, carry)
|
||||||
|
}
|
||||||
|
|
||||||
|
const (
|
||||||
|
two30m2 = 1<<30 - 1<<2
|
||||||
|
two30p13m2 = 1<<30 + 1<<13 - 1<<2
|
||||||
|
two31m2 = 1<<31 - 1<<2
|
||||||
|
two31m3 = 1<<31 - 1<<3
|
||||||
|
two31p24m2 = 1<<31 + 1<<24 - 1<<2
|
||||||
|
two30m27m2 = 1<<30 - 1<<27 - 1<<2
|
||||||
|
)
|
||||||
|
|
||||||
|
// p256Zero31 is 0 mod p.
|
||||||
|
var p256Zero31 = [p256Limbs]uint32{two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2}
|
||||||
|
|
||||||
|
// p256Diff sets out = in-in2.
|
||||||
|
//
|
||||||
|
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
|
||||||
|
// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
|
||||||
|
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
func p256Diff(out, in, in2 *[p256Limbs]uint32) {
|
||||||
|
var carry uint32
|
||||||
|
|
||||||
|
for i := 0; ; i++ {
|
||||||
|
out[i] = in[i] - in2[i]
|
||||||
|
out[i] += p256Zero31[i]
|
||||||
|
out[i] += carry
|
||||||
|
carry = out[i] >> 29
|
||||||
|
out[i] &= bottom29Bits
|
||||||
|
|
||||||
|
i++
|
||||||
|
if i == p256Limbs {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
|
||||||
|
out[i] = in[i] - in2[i]
|
||||||
|
out[i] += p256Zero31[i]
|
||||||
|
out[i] += carry
|
||||||
|
carry = out[i] >> 28
|
||||||
|
out[i] &= bottom28Bits
|
||||||
|
}
|
||||||
|
|
||||||
|
p256ReduceCarry(out, carry)
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256ReduceDegree sets out = tmp/R mod p where tmp contains 64-bit words with
|
||||||
|
// the same 29,28,... bit positions as a field element.
|
||||||
|
//
|
||||||
|
// The values in field elements are in Montgomery form: x*R mod p where R =
|
||||||
|
// 2**257. Since we just multiplied two Montgomery values together, the result
|
||||||
|
// is x*y*R*R mod p. We wish to divide by R in order for the result also to be
|
||||||
|
// in Montgomery form.
|
||||||
|
//
|
||||||
|
// On entry: tmp[i] < 2**64.
|
||||||
|
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
func p256ReduceDegree(out *[p256Limbs]uint32, tmp [17]uint64) {
|
||||||
|
// The following table may be helpful when reading this code:
|
||||||
|
//
|
||||||
|
// Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
|
||||||
|
// Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
|
||||||
|
// Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
|
||||||
|
// (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285
|
||||||
|
var tmp2 [18]uint32
|
||||||
|
var carry, x, xMask uint32
|
||||||
|
|
||||||
|
// tmp contains 64-bit words with the same 29,28,29-bit positions as a
|
||||||
|
// field element. So the top of an element of tmp might overlap with
|
||||||
|
// another element two positions down. The following loop eliminates
|
||||||
|
// this overlap.
|
||||||
|
tmp2[0] = uint32(tmp[0]) & bottom29Bits
|
||||||
|
|
||||||
|
tmp2[1] = uint32(tmp[0]) >> 29
|
||||||
|
tmp2[1] |= (uint32(tmp[0]>>32) << 3) & bottom28Bits
|
||||||
|
tmp2[1] += uint32(tmp[1]) & bottom28Bits
|
||||||
|
carry = tmp2[1] >> 28
|
||||||
|
tmp2[1] &= bottom28Bits
|
||||||
|
|
||||||
|
for i := 2; i < 17; i++ {
|
||||||
|
tmp2[i] = (uint32(tmp[i-2] >> 32)) >> 25
|
||||||
|
tmp2[i] += (uint32(tmp[i-1])) >> 28
|
||||||
|
tmp2[i] += (uint32(tmp[i-1]>>32) << 4) & bottom29Bits
|
||||||
|
tmp2[i] += uint32(tmp[i]) & bottom29Bits
|
||||||
|
tmp2[i] += carry
|
||||||
|
carry = tmp2[i] >> 29
|
||||||
|
tmp2[i] &= bottom29Bits
|
||||||
|
|
||||||
|
i++
|
||||||
|
if i == 17 {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
tmp2[i] = uint32(tmp[i-2]>>32) >> 25
|
||||||
|
tmp2[i] += uint32(tmp[i-1]) >> 29
|
||||||
|
tmp2[i] += ((uint32(tmp[i-1] >> 32)) << 3) & bottom28Bits
|
||||||
|
tmp2[i] += uint32(tmp[i]) & bottom28Bits
|
||||||
|
tmp2[i] += carry
|
||||||
|
carry = tmp2[i] >> 28
|
||||||
|
tmp2[i] &= bottom28Bits
|
||||||
|
}
|
||||||
|
|
||||||
|
tmp2[17] = uint32(tmp[15]>>32) >> 25
|
||||||
|
tmp2[17] += uint32(tmp[16]) >> 29
|
||||||
|
tmp2[17] += uint32(tmp[16]>>32) << 3
|
||||||
|
tmp2[17] += carry
|
||||||
|
|
||||||
|
// Montgomery elimination of terms:
|
||||||
|
//
|
||||||
|
// Since R is 2**257, we can divide by R with a bitwise shift if we can
|
||||||
|
// ensure that the right-most 257 bits are all zero. We can make that true
|
||||||
|
// by adding multiplies of p without affecting the value.
|
||||||
|
//
|
||||||
|
// So we eliminate limbs from right to left. Since the bottom 29 bits of p
|
||||||
|
// are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
|
||||||
|
// We can do that for 8 further limbs and then right shift to eliminate the
|
||||||
|
// extra factor of R.
|
||||||
|
for i := 0; ; i += 2 {
|
||||||
|
tmp2[i+1] += tmp2[i] >> 29
|
||||||
|
x = tmp2[i] & bottom29Bits
|
||||||
|
xMask = nonZeroToAllOnes(x)
|
||||||
|
tmp2[i] = 0
|
||||||
|
|
||||||
|
// The bounds calculations for this loop are tricky. Each iteration of
|
||||||
|
// the loop eliminates two words by adding values to words to their
|
||||||
|
// right.
|
||||||
|
//
|
||||||
|
// The following table contains the amounts added to each word (as an
|
||||||
|
// offset from the value of i at the top of the loop). The amounts are
|
||||||
|
// accounted for from the first and second half of the loop separately
|
||||||
|
// and are written as, for example, 28 to mean a value <2**28.
|
||||||
|
//
|
||||||
|
// Word: 3 4 5 6 7 8 9 10
|
||||||
|
// Added in top half: 28 11 29 21 29 28
|
||||||
|
// 28 29
|
||||||
|
// 29
|
||||||
|
// Added in bottom half: 29 10 28 21 28 28
|
||||||
|
// 29
|
||||||
|
//
|
||||||
|
// The value that is currently offset 7 will be offset 5 for the next
|
||||||
|
// iteration and then offset 3 for the iteration after that. Therefore
|
||||||
|
// the total value added will be the values added at 7, 5 and 3.
|
||||||
|
//
|
||||||
|
// The following table accumulates these values. The sums at the bottom
|
||||||
|
// are written as, for example, 29+28, to mean a value < 2**29+2**28.
|
||||||
|
//
|
||||||
|
// Word: 3 4 5 6 7 8 9 10 11 12 13
|
||||||
|
// 28 11 10 29 21 29 28 28 28 28 28
|
||||||
|
// 29 28 11 28 29 28 29 28 29 28
|
||||||
|
// 29 28 21 21 29 21 29 21
|
||||||
|
// 10 29 28 21 28 21 28
|
||||||
|
// 28 29 28 29 28 29 28
|
||||||
|
// 11 10 29 10 29 10
|
||||||
|
// 29 28 11 28 11
|
||||||
|
// 29 29
|
||||||
|
// --------------------------------------------
|
||||||
|
// 30+ 31+ 30+ 31+ 30+
|
||||||
|
// 28+ 29+ 28+ 29+ 21+
|
||||||
|
// 21+ 28+ 21+ 28+ 10
|
||||||
|
// 10 21+ 10 21+
|
||||||
|
// 11 11
|
||||||
|
//
|
||||||
|
// So the greatest amount is added to tmp2[10] and tmp2[12]. If
|
||||||
|
// tmp2[10/12] has an initial value of <2**29, then the maximum value
|
||||||
|
// will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
|
||||||
|
// as required.
|
||||||
|
tmp2[i+3] += (x << 10) & bottom28Bits
|
||||||
|
tmp2[i+4] += (x >> 18)
|
||||||
|
|
||||||
|
tmp2[i+6] += (x << 21) & bottom29Bits
|
||||||
|
tmp2[i+7] += x >> 8
|
||||||
|
|
||||||
|
// At position 200, which is the starting bit position for word 7, we
|
||||||
|
// have a factor of 0xf000000 = 2**28 - 2**24.
|
||||||
|
tmp2[i+7] += 0x10000000 & xMask
|
||||||
|
tmp2[i+8] += (x - 1) & xMask
|
||||||
|
tmp2[i+7] -= (x << 24) & bottom28Bits
|
||||||
|
tmp2[i+8] -= x >> 4
|
||||||
|
|
||||||
|
tmp2[i+8] += 0x20000000 & xMask
|
||||||
|
tmp2[i+8] -= x
|
||||||
|
tmp2[i+8] += (x << 28) & bottom29Bits
|
||||||
|
tmp2[i+9] += ((x >> 1) - 1) & xMask
|
||||||
|
|
||||||
|
if i+1 == p256Limbs {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
tmp2[i+2] += tmp2[i+1] >> 28
|
||||||
|
x = tmp2[i+1] & bottom28Bits
|
||||||
|
xMask = nonZeroToAllOnes(x)
|
||||||
|
tmp2[i+1] = 0
|
||||||
|
|
||||||
|
tmp2[i+4] += (x << 11) & bottom29Bits
|
||||||
|
tmp2[i+5] += (x >> 18)
|
||||||
|
|
||||||
|
tmp2[i+7] += (x << 21) & bottom28Bits
|
||||||
|
tmp2[i+8] += x >> 7
|
||||||
|
|
||||||
|
// At position 199, which is the starting bit of the 8th word when
|
||||||
|
// dealing with a context starting on an odd word, we have a factor of
|
||||||
|
// 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
|
||||||
|
// word from i+1 is i+8.
|
||||||
|
tmp2[i+8] += 0x20000000 & xMask
|
||||||
|
tmp2[i+9] += (x - 1) & xMask
|
||||||
|
tmp2[i+8] -= (x << 25) & bottom29Bits
|
||||||
|
tmp2[i+9] -= x >> 4
|
||||||
|
|
||||||
|
tmp2[i+9] += 0x10000000 & xMask
|
||||||
|
tmp2[i+9] -= x
|
||||||
|
tmp2[i+10] += (x - 1) & xMask
|
||||||
|
}
|
||||||
|
|
||||||
|
// We merge the right shift with a carry chain. The words above 2**257 have
|
||||||
|
// widths of 28,29,... which we need to correct when copying them down.
|
||||||
|
carry = 0
|
||||||
|
for i := 0; i < 8; i++ {
|
||||||
|
// The maximum value of tmp2[i + 9] occurs on the first iteration and
|
||||||
|
// is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
|
||||||
|
// therefore safe.
|
||||||
|
out[i] = tmp2[i+9]
|
||||||
|
out[i] += carry
|
||||||
|
out[i] += (tmp2[i+10] << 28) & bottom29Bits
|
||||||
|
carry = out[i] >> 29
|
||||||
|
out[i] &= bottom29Bits
|
||||||
|
|
||||||
|
i++
|
||||||
|
out[i] = tmp2[i+9] >> 1
|
||||||
|
out[i] += carry
|
||||||
|
carry = out[i] >> 28
|
||||||
|
out[i] &= bottom28Bits
|
||||||
|
}
|
||||||
|
|
||||||
|
out[8] = tmp2[17]
|
||||||
|
out[8] += carry
|
||||||
|
carry = out[8] >> 29
|
||||||
|
out[8] &= bottom29Bits
|
||||||
|
|
||||||
|
p256ReduceCarry(out, carry)
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256Square sets out=in*in.
|
||||||
|
//
|
||||||
|
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
|
||||||
|
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
func p256Square(out, in *[p256Limbs]uint32) {
|
||||||
|
var tmp [17]uint64
|
||||||
|
|
||||||
|
tmp[0] = uint64(in[0]) * uint64(in[0])
|
||||||
|
tmp[1] = uint64(in[0]) * (uint64(in[1]) << 1)
|
||||||
|
tmp[2] = uint64(in[0])*(uint64(in[2])<<1) +
|
||||||
|
uint64(in[1])*(uint64(in[1])<<1)
|
||||||
|
tmp[3] = uint64(in[0])*(uint64(in[3])<<1) +
|
||||||
|
uint64(in[1])*(uint64(in[2])<<1)
|
||||||
|
tmp[4] = uint64(in[0])*(uint64(in[4])<<1) +
|
||||||
|
uint64(in[1])*(uint64(in[3])<<2) +
|
||||||
|
uint64(in[2])*uint64(in[2])
|
||||||
|
tmp[5] = uint64(in[0])*(uint64(in[5])<<1) +
|
||||||
|
uint64(in[1])*(uint64(in[4])<<1) +
|
||||||
|
uint64(in[2])*(uint64(in[3])<<1)
|
||||||
|
tmp[6] = uint64(in[0])*(uint64(in[6])<<1) +
|
||||||
|
uint64(in[1])*(uint64(in[5])<<2) +
|
||||||
|
uint64(in[2])*(uint64(in[4])<<1) +
|
||||||
|
uint64(in[3])*(uint64(in[3])<<1)
|
||||||
|
tmp[7] = uint64(in[0])*(uint64(in[7])<<1) +
|
||||||
|
uint64(in[1])*(uint64(in[6])<<1) +
|
||||||
|
uint64(in[2])*(uint64(in[5])<<1) +
|
||||||
|
uint64(in[3])*(uint64(in[4])<<1)
|
||||||
|
// tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
|
||||||
|
// which is < 2**64 as required.
|
||||||
|
tmp[8] = uint64(in[0])*(uint64(in[8])<<1) +
|
||||||
|
uint64(in[1])*(uint64(in[7])<<2) +
|
||||||
|
uint64(in[2])*(uint64(in[6])<<1) +
|
||||||
|
uint64(in[3])*(uint64(in[5])<<2) +
|
||||||
|
uint64(in[4])*uint64(in[4])
|
||||||
|
tmp[9] = uint64(in[1])*(uint64(in[8])<<1) +
|
||||||
|
uint64(in[2])*(uint64(in[7])<<1) +
|
||||||
|
uint64(in[3])*(uint64(in[6])<<1) +
|
||||||
|
uint64(in[4])*(uint64(in[5])<<1)
|
||||||
|
tmp[10] = uint64(in[2])*(uint64(in[8])<<1) +
|
||||||
|
uint64(in[3])*(uint64(in[7])<<2) +
|
||||||
|
uint64(in[4])*(uint64(in[6])<<1) +
|
||||||
|
uint64(in[5])*(uint64(in[5])<<1)
|
||||||
|
tmp[11] = uint64(in[3])*(uint64(in[8])<<1) +
|
||||||
|
uint64(in[4])*(uint64(in[7])<<1) +
|
||||||
|
uint64(in[5])*(uint64(in[6])<<1)
|
||||||
|
tmp[12] = uint64(in[4])*(uint64(in[8])<<1) +
|
||||||
|
uint64(in[5])*(uint64(in[7])<<2) +
|
||||||
|
uint64(in[6])*uint64(in[6])
|
||||||
|
tmp[13] = uint64(in[5])*(uint64(in[8])<<1) +
|
||||||
|
uint64(in[6])*(uint64(in[7])<<1)
|
||||||
|
tmp[14] = uint64(in[6])*(uint64(in[8])<<1) +
|
||||||
|
uint64(in[7])*(uint64(in[7])<<1)
|
||||||
|
tmp[15] = uint64(in[7]) * (uint64(in[8]) << 1)
|
||||||
|
tmp[16] = uint64(in[8]) * uint64(in[8])
|
||||||
|
|
||||||
|
p256ReduceDegree(out, tmp)
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256Mul sets out=in*in2.
|
||||||
|
//
|
||||||
|
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
|
||||||
|
// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
|
||||||
|
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
func p256Mul(out, in, in2 *[p256Limbs]uint32) {
|
||||||
|
var tmp [17]uint64
|
||||||
|
|
||||||
|
tmp[0] = uint64(in[0]) * uint64(in2[0])
|
||||||
|
tmp[1] = uint64(in[0])*(uint64(in2[1])<<0) +
|
||||||
|
uint64(in[1])*(uint64(in2[0])<<0)
|
||||||
|
tmp[2] = uint64(in[0])*(uint64(in2[2])<<0) +
|
||||||
|
uint64(in[1])*(uint64(in2[1])<<1) +
|
||||||
|
uint64(in[2])*(uint64(in2[0])<<0)
|
||||||
|
tmp[3] = uint64(in[0])*(uint64(in2[3])<<0) +
|
||||||
|
uint64(in[1])*(uint64(in2[2])<<0) +
|
||||||
|
uint64(in[2])*(uint64(in2[1])<<0) +
|
||||||
|
uint64(in[3])*(uint64(in2[0])<<0)
|
||||||
|
tmp[4] = uint64(in[0])*(uint64(in2[4])<<0) +
|
||||||
|
uint64(in[1])*(uint64(in2[3])<<1) +
|
||||||
|
uint64(in[2])*(uint64(in2[2])<<0) +
|
||||||
|
uint64(in[3])*(uint64(in2[1])<<1) +
|
||||||
|
uint64(in[4])*(uint64(in2[0])<<0)
|
||||||
|
tmp[5] = uint64(in[0])*(uint64(in2[5])<<0) +
|
||||||
|
uint64(in[1])*(uint64(in2[4])<<0) +
|
||||||
|
uint64(in[2])*(uint64(in2[3])<<0) +
|
||||||
|
uint64(in[3])*(uint64(in2[2])<<0) +
|
||||||
|
uint64(in[4])*(uint64(in2[1])<<0) +
|
||||||
|
uint64(in[5])*(uint64(in2[0])<<0)
|
||||||
|
tmp[6] = uint64(in[0])*(uint64(in2[6])<<0) +
|
||||||
|
uint64(in[1])*(uint64(in2[5])<<1) +
|
||||||
|
uint64(in[2])*(uint64(in2[4])<<0) +
|
||||||
|
uint64(in[3])*(uint64(in2[3])<<1) +
|
||||||
|
uint64(in[4])*(uint64(in2[2])<<0) +
|
||||||
|
uint64(in[5])*(uint64(in2[1])<<1) +
|
||||||
|
uint64(in[6])*(uint64(in2[0])<<0)
|
||||||
|
tmp[7] = uint64(in[0])*(uint64(in2[7])<<0) +
|
||||||
|
uint64(in[1])*(uint64(in2[6])<<0) +
|
||||||
|
uint64(in[2])*(uint64(in2[5])<<0) +
|
||||||
|
uint64(in[3])*(uint64(in2[4])<<0) +
|
||||||
|
uint64(in[4])*(uint64(in2[3])<<0) +
|
||||||
|
uint64(in[5])*(uint64(in2[2])<<0) +
|
||||||
|
uint64(in[6])*(uint64(in2[1])<<0) +
|
||||||
|
uint64(in[7])*(uint64(in2[0])<<0)
|
||||||
|
// tmp[8] has the greatest value but doesn't overflow. See logic in
|
||||||
|
// p256Square.
|
||||||
|
tmp[8] = uint64(in[0])*(uint64(in2[8])<<0) +
|
||||||
|
uint64(in[1])*(uint64(in2[7])<<1) +
|
||||||
|
uint64(in[2])*(uint64(in2[6])<<0) +
|
||||||
|
uint64(in[3])*(uint64(in2[5])<<1) +
|
||||||
|
uint64(in[4])*(uint64(in2[4])<<0) +
|
||||||
|
uint64(in[5])*(uint64(in2[3])<<1) +
|
||||||
|
uint64(in[6])*(uint64(in2[2])<<0) +
|
||||||
|
uint64(in[7])*(uint64(in2[1])<<1) +
|
||||||
|
uint64(in[8])*(uint64(in2[0])<<0)
|
||||||
|
tmp[9] = uint64(in[1])*(uint64(in2[8])<<0) +
|
||||||
|
uint64(in[2])*(uint64(in2[7])<<0) +
|
||||||
|
uint64(in[3])*(uint64(in2[6])<<0) +
|
||||||
|
uint64(in[4])*(uint64(in2[5])<<0) +
|
||||||
|
uint64(in[5])*(uint64(in2[4])<<0) +
|
||||||
|
uint64(in[6])*(uint64(in2[3])<<0) +
|
||||||
|
uint64(in[7])*(uint64(in2[2])<<0) +
|
||||||
|
uint64(in[8])*(uint64(in2[1])<<0)
|
||||||
|
tmp[10] = uint64(in[2])*(uint64(in2[8])<<0) +
|
||||||
|
uint64(in[3])*(uint64(in2[7])<<1) +
|
||||||
|
uint64(in[4])*(uint64(in2[6])<<0) +
|
||||||
|
uint64(in[5])*(uint64(in2[5])<<1) +
|
||||||
|
uint64(in[6])*(uint64(in2[4])<<0) +
|
||||||
|
uint64(in[7])*(uint64(in2[3])<<1) +
|
||||||
|
uint64(in[8])*(uint64(in2[2])<<0)
|
||||||
|
tmp[11] = uint64(in[3])*(uint64(in2[8])<<0) +
|
||||||
|
uint64(in[4])*(uint64(in2[7])<<0) +
|
||||||
|
uint64(in[5])*(uint64(in2[6])<<0) +
|
||||||
|
uint64(in[6])*(uint64(in2[5])<<0) +
|
||||||
|
uint64(in[7])*(uint64(in2[4])<<0) +
|
||||||
|
uint64(in[8])*(uint64(in2[3])<<0)
|
||||||
|
tmp[12] = uint64(in[4])*(uint64(in2[8])<<0) +
|
||||||
|
uint64(in[5])*(uint64(in2[7])<<1) +
|
||||||
|
uint64(in[6])*(uint64(in2[6])<<0) +
|
||||||
|
uint64(in[7])*(uint64(in2[5])<<1) +
|
||||||
|
uint64(in[8])*(uint64(in2[4])<<0)
|
||||||
|
tmp[13] = uint64(in[5])*(uint64(in2[8])<<0) +
|
||||||
|
uint64(in[6])*(uint64(in2[7])<<0) +
|
||||||
|
uint64(in[7])*(uint64(in2[6])<<0) +
|
||||||
|
uint64(in[8])*(uint64(in2[5])<<0)
|
||||||
|
tmp[14] = uint64(in[6])*(uint64(in2[8])<<0) +
|
||||||
|
uint64(in[7])*(uint64(in2[7])<<1) +
|
||||||
|
uint64(in[8])*(uint64(in2[6])<<0)
|
||||||
|
tmp[15] = uint64(in[7])*(uint64(in2[8])<<0) +
|
||||||
|
uint64(in[8])*(uint64(in2[7])<<0)
|
||||||
|
tmp[16] = uint64(in[8]) * (uint64(in2[8]) << 0)
|
||||||
|
|
||||||
|
p256ReduceDegree(out, tmp)
|
||||||
|
}
|
||||||
|
|
||||||
|
func p256Assign(out, in *[p256Limbs]uint32) {
|
||||||
|
*out = *in
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256Invert calculates |out| = |in|^{-1}
|
||||||
|
//
|
||||||
|
// Based on Fermat's Little Theorem:
|
||||||
|
//
|
||||||
|
// a^p = a (mod p)
|
||||||
|
// a^{p-1} = 1 (mod p)
|
||||||
|
// a^{p-2} = a^{-1} (mod p)
|
||||||
|
func p256Invert(out, in *[p256Limbs]uint32) {
|
||||||
|
var ftmp, ftmp2 [p256Limbs]uint32
|
||||||
|
|
||||||
|
// each e_I will hold |in|^{2^I - 1}
|
||||||
|
var e2, e4, e8, e16, e32, e64 [p256Limbs]uint32
|
||||||
|
|
||||||
|
p256Square(&ftmp, in) // 2^1
|
||||||
|
p256Mul(&ftmp, in, &ftmp) // 2^2 - 2^0
|
||||||
|
p256Assign(&e2, &ftmp)
|
||||||
|
p256Square(&ftmp, &ftmp) // 2^3 - 2^1
|
||||||
|
p256Square(&ftmp, &ftmp) // 2^4 - 2^2
|
||||||
|
p256Mul(&ftmp, &ftmp, &e2) // 2^4 - 2^0
|
||||||
|
p256Assign(&e4, &ftmp)
|
||||||
|
p256Square(&ftmp, &ftmp) // 2^5 - 2^1
|
||||||
|
p256Square(&ftmp, &ftmp) // 2^6 - 2^2
|
||||||
|
p256Square(&ftmp, &ftmp) // 2^7 - 2^3
|
||||||
|
p256Square(&ftmp, &ftmp) // 2^8 - 2^4
|
||||||
|
p256Mul(&ftmp, &ftmp, &e4) // 2^8 - 2^0
|
||||||
|
p256Assign(&e8, &ftmp)
|
||||||
|
for i := 0; i < 8; i++ {
|
||||||
|
p256Square(&ftmp, &ftmp)
|
||||||
|
} // 2^16 - 2^8
|
||||||
|
p256Mul(&ftmp, &ftmp, &e8) // 2^16 - 2^0
|
||||||
|
p256Assign(&e16, &ftmp)
|
||||||
|
for i := 0; i < 16; i++ {
|
||||||
|
p256Square(&ftmp, &ftmp)
|
||||||
|
} // 2^32 - 2^16
|
||||||
|
p256Mul(&ftmp, &ftmp, &e16) // 2^32 - 2^0
|
||||||
|
p256Assign(&e32, &ftmp)
|
||||||
|
for i := 0; i < 32; i++ {
|
||||||
|
p256Square(&ftmp, &ftmp)
|
||||||
|
} // 2^64 - 2^32
|
||||||
|
p256Assign(&e64, &ftmp)
|
||||||
|
p256Mul(&ftmp, &ftmp, in) // 2^64 - 2^32 + 2^0
|
||||||
|
for i := 0; i < 192; i++ {
|
||||||
|
p256Square(&ftmp, &ftmp)
|
||||||
|
} // 2^256 - 2^224 + 2^192
|
||||||
|
|
||||||
|
p256Mul(&ftmp2, &e64, &e32) // 2^64 - 2^0
|
||||||
|
for i := 0; i < 16; i++ {
|
||||||
|
p256Square(&ftmp2, &ftmp2)
|
||||||
|
} // 2^80 - 2^16
|
||||||
|
p256Mul(&ftmp2, &ftmp2, &e16) // 2^80 - 2^0
|
||||||
|
for i := 0; i < 8; i++ {
|
||||||
|
p256Square(&ftmp2, &ftmp2)
|
||||||
|
} // 2^88 - 2^8
|
||||||
|
p256Mul(&ftmp2, &ftmp2, &e8) // 2^88 - 2^0
|
||||||
|
for i := 0; i < 4; i++ {
|
||||||
|
p256Square(&ftmp2, &ftmp2)
|
||||||
|
} // 2^92 - 2^4
|
||||||
|
p256Mul(&ftmp2, &ftmp2, &e4) // 2^92 - 2^0
|
||||||
|
p256Square(&ftmp2, &ftmp2) // 2^93 - 2^1
|
||||||
|
p256Square(&ftmp2, &ftmp2) // 2^94 - 2^2
|
||||||
|
p256Mul(&ftmp2, &ftmp2, &e2) // 2^94 - 2^0
|
||||||
|
p256Square(&ftmp2, &ftmp2) // 2^95 - 2^1
|
||||||
|
p256Square(&ftmp2, &ftmp2) // 2^96 - 2^2
|
||||||
|
p256Mul(&ftmp2, &ftmp2, in) // 2^96 - 3
|
||||||
|
|
||||||
|
p256Mul(out, &ftmp2, &ftmp) // 2^256 - 2^224 + 2^192 + 2^96 - 3
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256Scalar3 sets out=3*out.
|
||||||
|
//
|
||||||
|
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
func p256Scalar3(out *[p256Limbs]uint32) {
|
||||||
|
var carry uint32
|
||||||
|
|
||||||
|
for i := 0; ; i++ {
|
||||||
|
out[i] *= 3
|
||||||
|
out[i] += carry
|
||||||
|
carry = out[i] >> 29
|
||||||
|
out[i] &= bottom29Bits
|
||||||
|
|
||||||
|
i++
|
||||||
|
if i == p256Limbs {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
|
||||||
|
out[i] *= 3
|
||||||
|
out[i] += carry
|
||||||
|
carry = out[i] >> 28
|
||||||
|
out[i] &= bottom28Bits
|
||||||
|
}
|
||||||
|
|
||||||
|
p256ReduceCarry(out, carry)
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256Scalar4 sets out=4*out.
|
||||||
|
//
|
||||||
|
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
func p256Scalar4(out *[p256Limbs]uint32) {
|
||||||
|
var carry, nextCarry uint32
|
||||||
|
|
||||||
|
for i := 0; ; i++ {
|
||||||
|
nextCarry = out[i] >> 27
|
||||||
|
out[i] <<= 2
|
||||||
|
out[i] &= bottom29Bits
|
||||||
|
out[i] += carry
|
||||||
|
carry = nextCarry + (out[i] >> 29)
|
||||||
|
out[i] &= bottom29Bits
|
||||||
|
|
||||||
|
i++
|
||||||
|
if i == p256Limbs {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
nextCarry = out[i] >> 26
|
||||||
|
out[i] <<= 2
|
||||||
|
out[i] &= bottom28Bits
|
||||||
|
out[i] += carry
|
||||||
|
carry = nextCarry + (out[i] >> 28)
|
||||||
|
out[i] &= bottom28Bits
|
||||||
|
}
|
||||||
|
|
||||||
|
p256ReduceCarry(out, carry)
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256Scalar8 sets out=8*out.
|
||||||
|
//
|
||||||
|
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
|
||||||
|
func p256Scalar8(out *[p256Limbs]uint32) {
|
||||||
|
var carry, nextCarry uint32
|
||||||
|
|
||||||
|
for i := 0; ; i++ {
|
||||||
|
nextCarry = out[i] >> 26
|
||||||
|
out[i] <<= 3
|
||||||
|
out[i] &= bottom29Bits
|
||||||
|
out[i] += carry
|
||||||
|
carry = nextCarry + (out[i] >> 29)
|
||||||
|
out[i] &= bottom29Bits
|
||||||
|
|
||||||
|
i++
|
||||||
|
if i == p256Limbs {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
nextCarry = out[i] >> 25
|
||||||
|
out[i] <<= 3
|
||||||
|
out[i] &= bottom28Bits
|
||||||
|
out[i] += carry
|
||||||
|
carry = nextCarry + (out[i] >> 28)
|
||||||
|
out[i] &= bottom28Bits
|
||||||
|
}
|
||||||
|
|
||||||
|
p256ReduceCarry(out, carry)
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256CopyConditional sets out=in if mask = 0xffffffff in constant time.
|
||||||
|
//
|
||||||
|
// On entry: mask is either 0 or 0xffffffff.
|
||||||
|
func p256CopyConditional(out, in *[p256Limbs]uint32, mask uint32) {
|
||||||
|
for i := 0; i < p256Limbs; i++ {
|
||||||
|
tmp := mask & (in[i] ^ out[i])
|
||||||
|
out[i] ^= tmp
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256FromBig sets out = R*in.
|
||||||
|
func p256FromBig(out *[p256Limbs]uint32, in *big.Int) {
|
||||||
|
tmp := new(big.Int).Lsh(in, 257)
|
||||||
|
tmp.Mod(tmp, p256Params.P)
|
||||||
|
|
||||||
|
for i := 0; i < p256Limbs; i++ {
|
||||||
|
if bits := tmp.Bits(); len(bits) > 0 {
|
||||||
|
out[i] = uint32(bits[0]) & bottom29Bits
|
||||||
|
} else {
|
||||||
|
out[i] = 0
|
||||||
|
}
|
||||||
|
tmp.Rsh(tmp, 29)
|
||||||
|
|
||||||
|
i++
|
||||||
|
if i == p256Limbs {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
|
||||||
|
if bits := tmp.Bits(); len(bits) > 0 {
|
||||||
|
out[i] = uint32(bits[0]) & bottom28Bits
|
||||||
|
} else {
|
||||||
|
out[i] = 0
|
||||||
|
}
|
||||||
|
tmp.Rsh(tmp, 28)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// p256ToBig returns a *big.Int containing the value of in.
|
||||||
|
func p256ToBig(in *[p256Limbs]uint32) *big.Int {
|
||||||
|
result, tmp := new(big.Int), new(big.Int)
|
||||||
|
|
||||||
|
result.SetInt64(int64(in[p256Limbs-1]))
|
||||||
|
for i := p256Limbs - 2; i >= 0; i-- {
|
||||||
|
if (i & 1) == 0 {
|
||||||
|
result.Lsh(result, 29)
|
||||||
|
} else {
|
||||||
|
result.Lsh(result, 28)
|
||||||
|
}
|
||||||
|
tmp.SetInt64(int64(in[i]))
|
||||||
|
result.Add(result, tmp)
|
||||||
|
}
|
||||||
|
|
||||||
|
result.Mul(result, p256RInverse)
|
||||||
|
result.Mod(result, p256Params.P)
|
||||||
|
return result
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user