diff --git a/src/crypto/elliptic/internal/nistec/nistec_test.go b/src/crypto/elliptic/internal/nistec/nistec_test.go index 9ce82a8f290..68879d55d79 100644 --- a/src/crypto/elliptic/internal/nistec/nistec_test.go +++ b/src/crypto/elliptic/internal/nistec/nistec_test.go @@ -6,7 +6,9 @@ package nistec_test import ( "bytes" + "crypto/elliptic" "crypto/elliptic/internal/nistec" + "math/big" "math/rand" "os" "strings" @@ -90,27 +92,27 @@ type nistPoint[T any] interface { func TestEquivalents(t *testing.T) { t.Run("P224", func(t *testing.T) { - testEquivalents(t, nistec.NewP224Point, nistec.NewP224Generator) + testEquivalents(t, nistec.NewP224Point, nistec.NewP224Generator, elliptic.P224()) }) t.Run("P256", func(t *testing.T) { - testEquivalents(t, nistec.NewP256Point, nistec.NewP256Generator) + testEquivalents(t, nistec.NewP256Point, nistec.NewP256Generator, elliptic.P256()) }) t.Run("P384", func(t *testing.T) { - testEquivalents(t, nistec.NewP384Point, nistec.NewP384Generator) + testEquivalents(t, nistec.NewP384Point, nistec.NewP384Generator, elliptic.P384()) }) t.Run("P521", func(t *testing.T) { - testEquivalents(t, nistec.NewP521Point, nistec.NewP521Generator) + testEquivalents(t, nistec.NewP521Point, nistec.NewP521Generator, elliptic.P521()) }) } -func testEquivalents[P nistPoint[P]](t *testing.T, newPoint, newGenerator func() P) { +func testEquivalents[P nistPoint[P]](t *testing.T, newPoint, newGenerator func() P, c elliptic.Curve) { p := newGenerator() - // This assumes the base and scalar fields have the same byte size, which - // they do for these curves. - elementSize := len(p.Bytes()) / 2 + elementSize := (c.Params().BitSize + 7) / 8 two := make([]byte, elementSize) two[len(two)-1] = 2 + nPlusTwo := make([]byte, elementSize) + new(big.Int).Add(c.Params().N, big.NewInt(2)).FillBytes(nPlusTwo) p1 := newPoint().Double(p) p2 := newPoint().Add(p, p) @@ -122,6 +124,14 @@ func testEquivalents[P nistPoint[P]](t *testing.T, newPoint, newGenerator func() if err != nil { t.Fatal(err) } + p5, err := newPoint().ScalarMult(p, nPlusTwo) + if err != nil { + t.Fatal(err) + } + p6, err := newPoint().ScalarBaseMult(nPlusTwo) + if err != nil { + t.Fatal(err) + } if !bytes.Equal(p1.Bytes(), p2.Bytes()) { t.Error("P+P != 2*P") @@ -132,6 +142,12 @@ func testEquivalents[P nistPoint[P]](t *testing.T, newPoint, newGenerator func() if !bytes.Equal(p1.Bytes(), p4.Bytes()) { t.Error("G+G != [2]G") } + if !bytes.Equal(p1.Bytes(), p5.Bytes()) { + t.Error("P+P != [N+2]P") + } + if !bytes.Equal(p1.Bytes(), p6.Bytes()) { + t.Error("G+G != [N+2]G") + } } func BenchmarkScalarMult(b *testing.B) { diff --git a/src/crypto/elliptic/internal/nistec/p256_asm.go b/src/crypto/elliptic/internal/nistec/p256_asm.go index 2bd3166062c..bf1badd5e00 100644 --- a/src/crypto/elliptic/internal/nistec/p256_asm.go +++ b/src/crypto/elliptic/internal/nistec/p256_asm.go @@ -18,37 +18,52 @@ import ( _ "embed" "errors" "math/bits" + "unsafe" ) -//go:embed p256_asm_table.bin -var p256Precomputed string +// p256Element is a P-256 base field element in [0, P-1] in the Montgomery +// domain (with R 2²⁵⁶) as four limbs in little-endian order value. +type p256Element [4]uint64 -// P256Point is a P-256 point. The zero value is NOT valid. +// p256One is one in the Montgomery domain. +var p256One = p256Element{0x0000000000000001, 0xffffffff00000000, + 0xffffffffffffffff, 0x00000000fffffffe} + +var p256Zero = p256Element{} + +// p256P is 2²⁵⁶ - 2²²⁴ + 2¹⁹² + 2⁹⁶ - 1 in the Montgomery domain. +var p256P = p256Element{0xffffffffffffffff, 0x00000000ffffffff, + 0x0000000000000000, 0xffffffff00000001} + +// P256Point is a P-256 point. The zero value should not be assumed to be valid +// (although it is in this implementation). type P256Point struct { - xyz [12]uint64 + // (X:Y:Z) are Jacobian coordinates where x = X/Z² and y = Y/Z³. The point + // at infinity can be represented by any set of coordinates with Z = 0. + x, y, z p256Element } -// NewP256Point returns a new P256Point representing the point at infinity point. +// NewP256Point returns a new P256Point representing the point at infinity. func NewP256Point() *P256Point { - return &P256Point{[12]uint64{ - 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe, - 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe, - 0, 0, 0, 0, - }} + return &P256Point{ + x: p256One, y: p256One, z: p256Zero, + } } // NewP256Generator returns a new P256Point set to the canonical generator. func NewP256Generator() *P256Point { - return &P256Point{[12]uint64{ - 0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510, 0x18905f76a53755c6, - 0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325, 0x8571ff1825885d85, - 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe, - }} + return &P256Point{ + x: p256Element{0x79e730d418a9143c, 0x75ba95fc5fedb601, + 0x79fb732b77622510, 0x18905f76a53755c6}, + y: p256Element{0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, + 0xd2e88688dd21f325, 0x8571ff1825885d85}, + z: p256One, + } } // Set sets p = q and returns p. func (p *P256Point) Set(q *P256Point) *P256Point { - p.xyz = q.xyz + p.x, p.y, p.z = q.x, q.y, q.z return p } @@ -69,21 +84,22 @@ func (p *P256Point) SetBytes(b []byte) (*P256Point, error) { // Uncompressed form. case len(b) == p256UncompressedLength && b[0] == 4: var r P256Point - p256BigToLittle(r.xyz[0:4], b[1:33]) - p256BigToLittle(r.xyz[4:8], b[33:65]) - if p256LessThanP(r.xyz[0:4]) == 0 || p256LessThanP(r.xyz[4:8]) == 0 { + p256BigToLittle(&r.x, (*[32]byte)(b[1:33])) + p256BigToLittle(&r.y, (*[32]byte)(b[33:65])) + if p256LessThanP(&r.x) == 0 || p256LessThanP(&r.y) == 0 { return nil, errors.New("invalid P256 element encoding") } - p256Mul(r.xyz[0:4], r.xyz[0:4], rr[:]) - p256Mul(r.xyz[4:8], r.xyz[4:8], rr[:]) - if err := p256CheckOnCurve(r.xyz[0:4], r.xyz[4:8]); err != nil { + // p256Mul operates in the Montgomery domain with R = 2²⁵⁶ mod p. Thus rr + // here is R in the Montgomery domain, or R×R mod p. See comment in + // P256OrdInverse about how this is used. + rr := p256Element{0x0000000000000003, 0xfffffffbffffffff, + 0xfffffffffffffffe, 0x00000004fffffffd} + p256Mul(&r.x, &r.x, &rr) + p256Mul(&r.y, &r.y, &rr) + if err := p256CheckOnCurve(&r.x, &r.y); err != nil { return nil, err } - // This sets r's Z value to 1, in the Montgomery domain. - r.xyz[8] = 0x0000000000000001 - r.xyz[9] = 0xffffffff00000000 - r.xyz[10] = 0xffffffffffffffff - r.xyz[11] = 0x00000000fffffffe + r.z = p256One return p.Set(&r), nil // Compressed form. @@ -95,40 +111,37 @@ func (p *P256Point) SetBytes(b []byte) (*P256Point, error) { } } -func p256CheckOnCurve(x, y []uint64) error { +func p256CheckOnCurve(x, y *p256Element) error { // x³ - 3x + b - x3 := make([]uint64, 4) + x3 := new(p256Element) p256Sqr(x3, x, 1) p256Mul(x3, x3, x) - threeX := make([]uint64, 4) + threeX := new(p256Element) p256Add(threeX, x, x) p256Add(threeX, threeX, x) p256NegCond(threeX, 1) - p256B := []uint64{0xd89cdf6229c4bddf, 0xacf005cd78843090, + p256B := &p256Element{0xd89cdf6229c4bddf, 0xacf005cd78843090, 0xe5a220abf7212ed6, 0xdc30061d04874834} p256Add(x3, x3, threeX) p256Add(x3, x3, p256B) // y² = x³ - 3x + b - y2 := make([]uint64, 4) + y2 := new(p256Element) p256Sqr(y2, y, 1) - diff := (x3[0] ^ y2[0]) | (x3[1] ^ y2[1]) | - (x3[2] ^ y2[2]) | (x3[3] ^ y2[3]) - if uint64IsZero(diff) != 1 { + if p256Equal(y2, x3) != 1 { return errors.New("P256 point not on curve") } return nil } -var p256P = []uint64{0xffffffffffffffff, 0x00000000ffffffff, - 0x0000000000000000, 0xffffffff00000001} - -// p256LessThanP returns 1 if x < p, and 0 otherwise. -func p256LessThanP(x []uint64) int { +// p256LessThanP returns 1 if x < p, and 0 otherwise. Note that a p256Element is +// not allowed to be equal to or greater than p, so if this function returns 0 +// then x is invalid. +func p256LessThanP(x *p256Element) int { var b uint64 _, b = bits.Sub64(x[0], p256P[0], b) _, b = bits.Sub64(x[1], p256P[1], b) @@ -137,7 +150,8 @@ func p256LessThanP(x []uint64) int { return int(b) } -func p256Add(res, x, y []uint64) { +// p256Add sets res = x + y. +func p256Add(res, x, y *p256Element) { var c, b uint64 t1 := make([]uint64, 4) t1[0], c = bits.Add64(x[0], y[0], 0) @@ -163,107 +177,152 @@ func p256Add(res, x, y []uint64) { res[3] = (t1[3] & ^t2Mask) | (t2[3] & t2Mask) } -// Functions implemented in p256_asm_*64.s -// Montgomery multiplication modulo P256 +// The following assembly functions are implemented in p256_asm_*.s + +// Montgomery multiplication. Sets res = in1 * in2 * R⁻¹ mod p. // //go:noescape -func p256Mul(res, in1, in2 []uint64) +func p256Mul(res, in1, in2 *p256Element) -// Montgomery square modulo P256, repeated n times (n >= 1) +// Montgomery square, repeated n times (n >= 1). // //go:noescape -func p256Sqr(res, in []uint64, n int) +func p256Sqr(res, in *p256Element, n int) -// Montgomery multiplication by 1 +// Montgomery multiplication by R⁻¹, or 1 outside the domain. +// Sets res = in * R⁻¹, bringing res out of the Montgomery domain. // //go:noescape -func p256FromMont(res, in []uint64) +func p256FromMont(res, in *p256Element) -// iff cond == 1 val <- -val +// If cond is not 0, sets val = -val mod p. // //go:noescape -func p256NegCond(val []uint64, cond int) +func p256NegCond(val *p256Element, cond int) -// if cond == 0 res <- b; else res <- a +// If cond is 0, sets res = b, otherwise sets res = a. // //go:noescape -func p256MovCond(res, a, b []uint64, cond int) +func p256MovCond(res, a, b *P256Point, cond int) -// Endianness swap +//go:noescape +func p256BigToLittle(res *p256Element, in *[32]byte) + +//go:noescape +func p256LittleToBig(res *[32]byte, in *p256Element) + +//go:noescape +func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte) + +//go:noescape +func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement) + +// p256Table is a table of the first 16 multiples of a point. Points are stored +// at an index offset of -1 so [8]P is at index 7, P is at 0, and [16]P is at 15. +// [0]P is the point at infinity and it's not stored. +type p256Table [16]P256Point + +// p256Select sets res to the point at index idx in the table. +// idx must be in [0, 15]. It executes in constant time. // //go:noescape -func p256BigToLittle(res []uint64, in []byte) +func p256Select(res *P256Point, table *p256Table, idx int) -//go:noescape -func p256LittleToBig(res []byte, in []uint64) +// p256AffinePoint is a point in affine coordinates (x, y). x and y are still +// Montgomery domain elements. The point can't be the point at infinity. +type p256AffinePoint struct { + x, y p256Element +} -// Constant time table access +// p256AffineTable is a table of the first 32 multiples of a point. Points are +// stored at an index offset of -1 like in p256Table, and [0]P is not stored. +type p256AffineTable [32]p256AffinePoint + +// p256Precomputed is a series of precomputed multiples of G, the canonical +// generator. The first p256AffineTable contains multiples of G. The second one +// multiples of [2⁶]G, the third one of [2¹²]G, and so on, where each successive +// table is the previous table doubled six times. Six is the width of the +// sliding window used in p256ScalarMult, and having each table already +// pre-doubled lets us avoid the doublings between windows entirely. This table +// MUST NOT be modified, as it aliases into p256PrecomputedEmbed below. +var p256Precomputed *[43]p256AffineTable + +//go:embed p256_asm_table.bin +var p256PrecomputedEmbed string + +func init() { + p256PrecomputedPtr := (*unsafe.Pointer)(unsafe.Pointer(&p256PrecomputedEmbed)) + p256Precomputed = (*[43]p256AffineTable)(*p256PrecomputedPtr) +} + +// p256SelectAffine sets res to the point at index idx in the table. +// idx must be in [0, 31]. It executes in constant time. // //go:noescape -func p256Select(point, table []uint64, idx int) +func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int) -//go:noescape -func p256SelectBase(point *[12]uint64, table string, idx int) - -// Montgomery multiplication modulo Ord(G) +// Point addition with an affine point and constant time conditions. +// If zero is 0, sets res = in2. If sel is 0, sets res = in1. +// If sign is not 0, sets res = in1 + -in2. Otherwise, sets res = in1 + in2 // //go:noescape -func p256OrdMul(res, in1, in2 []uint64) +func p256PointAddAffineAsm(res, in1 *P256Point, in2 *p256AffinePoint, sign, sel, zero int) -// Montgomery square modulo Ord(G), repeated n times +// Point addition. Sets res = in1 + in2. Returns one if the two input points +// were equal and zero otherwise. If in1 or in2 are the point at infinity, res +// and the return value are undefined. // //go:noescape -func p256OrdSqr(res, in []uint64, n int) +func p256PointAddAsm(res, in1, in2 *P256Point) int -// Point add with in2 being affine point -// If sign == 1 -> in2 = -in2 -// If sel == 0 -> res = in1 -// if zero == 0 -> res = in2 +// Point doubling. Sets res = in + in. in can be the point at infinity. // //go:noescape -func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int) +func p256PointDoubleAsm(res, in *P256Point) -// Point add. Returns one if the two input points were equal and zero -// otherwise. (Note that, due to the way that the equations work out, some -// representations of ∞ are considered equal to everything by this function.) +// p256OrdElement is a P-256 scalar field element in [0, ord(G)-1] in the +// Montgomery domain (with R 2²⁵⁶) as four uint64 limbs in little-endian order. +type p256OrdElement [4]uint64 + +// Montgomery multiplication modulo org(G). Sets res = in1 * in2 * R⁻¹. // //go:noescape -func p256PointAddAsm(res, in1, in2 []uint64) int +func p256OrdMul(res, in1, in2 *p256OrdElement) -// Point double +// Montgomery square modulo org(G), repeated n times (n >= 1). // //go:noescape -func p256PointDoubleAsm(res, in []uint64) +func p256OrdSqr(res, in *p256OrdElement, n int) func P256OrdInverse(k []byte) ([]byte, error) { - // TODO: test for values p <= x < 2^256. if len(k) != 32 { return nil, errors.New("invalid scalar length") } - // table will store precomputed powers of x. - var table [4 * 9]uint64 - var ( - _1 = table[4*0 : 4*1] - _11 = table[4*1 : 4*2] - _101 = table[4*2 : 4*3] - _111 = table[4*3 : 4*4] - _1111 = table[4*4 : 4*5] - _10101 = table[4*5 : 4*6] - _101111 = table[4*6 : 4*7] - x = table[4*7 : 4*8] - t = table[4*8 : 4*9] - ) + x := new(p256OrdElement) + p256OrdBigToLittle(x, (*[32]byte)(k)) + + // Inversion is implemented as exponentiation by n - 2, per Fermat's little theorem. + // + // The sequence of 38 multiplications and 254 squarings is derived from + // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion + _1 := new(p256OrdElement) + _11 := new(p256OrdElement) + _101 := new(p256OrdElement) + _111 := new(p256OrdElement) + _1111 := new(p256OrdElement) + _10101 := new(p256OrdElement) + _101111 := new(p256OrdElement) + t := new(p256OrdElement) + + // This code operates in the Montgomery domain where R = 2²⁵⁶ mod n and n is + // the order of the scalar field. Elements in the Montgomery domain take the + // form a×R and p256OrdMul calculates (a × b × R⁻¹) mod n. RR is R in the + // domain, or R×R mod n, thus p256OrdMul(x, RR) gives x×R, i.e. converts x + // into the Montgomery domain. + RR := &p256OrdElement{0x83244c95be79eea2, 0x4699799c49bd6fa6, + 0x2845b2392b6bec59, 0x66e12d94f3d95620} - p256BigToLittle(x, k) - // This code operates in the Montgomery domain where R = 2^256 mod n - // and n is the order of the scalar field. (See initP256 for the - // value.) Elements in the Montgomery domain take the form a×R and - // multiplication of x and y in the calculates (x × y × R^-1) mod n. RR - // is R×R mod n thus the Montgomery multiplication x and RR gives x×R, - // i.e. converts x into the Montgomery domain. - // Window values borrowed from https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion - RR := []uint64{0x83244c95be79eea2, 0x4699799c49bd6fa6, 0x2845b2392b6bec59, 0x66e12d94f3d95620} p256OrdMul(_1, x, RR) // _1 p256OrdSqr(x, _1, 1) // _10 p256OrdMul(_11, x, _1) // _11 @@ -289,13 +348,13 @@ func P256OrdInverse(k []byte) ([]byte, error) { p256OrdSqr(x, x, 32) p256OrdMul(x, x, t) - sqrs := []uint8{ + sqrs := []int{ 6, 5, 4, 5, 5, 4, 3, 3, 5, 9, 6, 2, 5, 6, 5, 4, 5, 5, 3, 10, 2, 5, 5, 3, 7, 6} - muls := [][]uint64{ + muls := []*p256OrdElement{ _101111, _111, _11, _1111, _10101, _101, _101, _101, _111, _101111, _1111, _1, _1, _1111, _111, @@ -303,42 +362,37 @@ func P256OrdInverse(k []byte) ([]byte, error) { _11, _11, _11, _1, _10101, _1111} for i, s := range sqrs { - p256OrdSqr(x, x, int(s)) + p256OrdSqr(x, x, s) p256OrdMul(x, x, muls[i]) } - // Multiplying by one in the Montgomery domain converts a Montgomery - // value out of the domain. - one := []uint64{1, 0, 0, 0} + // Montgomery multiplication by R⁻¹, or 1 outside the domain as R⁻¹×R = 1, + // converts a Montgomery value out of the domain. + one := &p256OrdElement{1} p256OrdMul(x, x, one) - xOut := make([]byte, 32) - p256LittleToBig(xOut, x) - return xOut, nil + var xOut [32]byte + p256OrdLittleToBig(&xOut, x) + return xOut[:], nil } -// p256Mul operates in a Montgomery domain with R = 2^256 mod p, where p is the -// underlying field of the curve. (See initP256 for the value.) Thus rr here is -// R×R mod p. See comment in Inverse about how this is used. -var rr = []uint64{0x0000000000000003, 0xfffffffbffffffff, 0xfffffffffffffffe, 0x00000004fffffffd} - // Add sets q = p1 + p2, and returns q. The points may overlap. func (q *P256Point) Add(r1, r2 *P256Point) *P256Point { var sum, double P256Point r1IsInfinity := r1.isInfinity() r2IsInfinity := r2.isInfinity() - pointsEqual := p256PointAddAsm(sum.xyz[:], r1.xyz[:], r2.xyz[:]) - p256PointDoubleAsm(double.xyz[:], r1.xyz[:]) - sum.Select(&double, &sum, pointsEqual) - sum.Select(r1, &sum, r2IsInfinity) - sum.Select(r2, &sum, r1IsInfinity) + pointsEqual := p256PointAddAsm(&sum, r1, r2) + p256PointDoubleAsm(&double, r1) + p256MovCond(&sum, &double, &sum, pointsEqual) + p256MovCond(&sum, r1, &sum, r2IsInfinity) + p256MovCond(&sum, r2, &sum, r1IsInfinity) return q.Set(&sum) } // Double sets q = p + p, and returns q. The points may overlap. func (q *P256Point) Double(p *P256Point) *P256Point { var double P256Point - p256PointDoubleAsm(double.xyz[:], p.xyz[:]) + p256PointDoubleAsm(&double, p) return q.Set(&double) } @@ -346,12 +400,11 @@ func (q *P256Point) Double(p *P256Point) *P256Point { // endian value, and returns r. If scalar is not 32 bytes long, ScalarBaseMult // returns an error and the receiver is unchanged. func (r *P256Point) ScalarBaseMult(scalar []byte) (*P256Point, error) { - // TODO: test for values p <= x < 2^256. if len(scalar) != 32 { return nil, errors.New("invalid scalar length") } - scalarReversed := make([]uint64, 4) - p256BigToLittle(scalarReversed, scalar) + scalarReversed := new(p256OrdElement) + p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar)) r.p256BaseMult(scalarReversed) return r, nil @@ -361,12 +414,11 @@ func (r *P256Point) ScalarBaseMult(scalar []byte) (*P256Point, error) { // and returns r. If scalar is not 32 bytes long, ScalarBaseMult returns an // error and the receiver is unchanged. func (r *P256Point) ScalarMult(q *P256Point, scalar []byte) (*P256Point, error) { - // TODO: test for values p <= x < 2^256. if len(scalar) != 32 { return nil, errors.New("invalid scalar length") } - scalarReversed := make([]uint64, 4) - p256BigToLittle(scalarReversed, scalar) + scalarReversed := new(p256OrdElement) + p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar)) r.Set(q).p256ScalarMult(scalarReversed) return r, nil @@ -384,9 +436,18 @@ func uint64IsZero(x uint64) int { return int(x & 1) } +// p256Equal returns 1 if a and b are equal and 0 otherwise. +func p256Equal(a, b *p256Element) int { + var acc uint64 + for i := range a { + acc |= a[i] ^ b[i] + } + return uint64IsZero(acc) +} + // isInfinity returns 1 if p is the point at infinity and 0 otherwise. func (p *P256Point) isInfinity() int { - return uint64IsZero(p.xyz[8] | p.xyz[9] | p.xyz[10] | p.xyz[11]) + return p256Equal(&p.z, &p256Zero) } // Bytes returns the uncompressed or infinity encoding of p, as specified in @@ -405,82 +466,83 @@ func (p *P256Point) bytes(out *[p256UncompressedLength]byte) []byte { return out[:1] } - zInv := make([]uint64, 4) - zInvSq := make([]uint64, 4) - p256Inverse(zInv, p.xyz[8:12]) + zInv := new(p256Element) + zInvSq := new(p256Element) + p256Inverse(zInv, &p.z) p256Sqr(zInvSq, zInv, 1) p256Mul(zInv, zInv, zInvSq) - p256Mul(zInvSq, p.xyz[0:4], zInvSq) - p256Mul(zInv, p.xyz[4:8], zInv) + p256Mul(zInvSq, &p.x, zInvSq) + p256Mul(zInv, &p.y, zInv) p256FromMont(zInvSq, zInvSq) p256FromMont(zInv, zInv) out[0] = 4 // Uncompressed form. - p256LittleToBig(out[1:33], zInvSq) - p256LittleToBig(out[33:65], zInv) + p256LittleToBig((*[32]byte)(out[1:33]), zInvSq) + p256LittleToBig((*[32]byte)(out[33:65]), zInv) return out[:] } // Select sets q to p1 if cond == 1, and to p2 if cond == 0. func (q *P256Point) Select(p1, p2 *P256Point, cond int) *P256Point { - p256MovCond(q.xyz[:], p1.xyz[:], p2.xyz[:], cond) + p256MovCond(q, p1, p2, cond) return q } -// p256Inverse sets out to in^-1 mod p. -func p256Inverse(out, in []uint64) { - var stack [6 * 4]uint64 - p2 := stack[4*0 : 4*0+4] - p4 := stack[4*1 : 4*1+4] - p8 := stack[4*2 : 4*2+4] - p16 := stack[4*3 : 4*3+4] - p32 := stack[4*4 : 4*4+4] +// p256Inverse sets out to in⁻¹ mod p. If in is zero, out will be zero. +func p256Inverse(out, in *p256Element) { + // Inversion is calculated through exponentiation by p - 2, per Fermat's + // little theorem. + // + // The sequence of 12 multiplications and 255 squarings is derived from the + // following addition chain generated with github.com/mmcloughlin/addchain + // v0.4.0. + // + // _10 = 2*1 + // _11 = 1 + _10 + // _110 = 2*_11 + // _111 = 1 + _110 + // _111000 = _111 << 3 + // _111111 = _111 + _111000 + // x12 = _111111 << 6 + _111111 + // x15 = x12 << 3 + _111 + // x16 = 2*x15 + 1 + // x32 = x16 << 16 + x16 + // i53 = x32 << 15 + // x47 = x15 + i53 + // i263 = ((i53 << 17 + 1) << 143 + x47) << 47 + // return (x47 + i263) << 2 + 1 + // + var z = new(p256Element) + var t0 = new(p256Element) + var t1 = new(p256Element) - p256Sqr(out, in, 1) - p256Mul(p2, out, in) // 3*p - - p256Sqr(out, p2, 2) - p256Mul(p4, out, p2) // f*p - - p256Sqr(out, p4, 4) - p256Mul(p8, out, p4) // ff*p - - p256Sqr(out, p8, 8) - p256Mul(p16, out, p8) // ffff*p - - p256Sqr(out, p16, 16) - p256Mul(p32, out, p16) // ffffffff*p - - p256Sqr(out, p32, 32) - p256Mul(out, out, in) - - p256Sqr(out, out, 128) - p256Mul(out, out, p32) - - p256Sqr(out, out, 32) - p256Mul(out, out, p32) - - p256Sqr(out, out, 16) - p256Mul(out, out, p16) - - p256Sqr(out, out, 8) - p256Mul(out, out, p8) - - p256Sqr(out, out, 4) - p256Mul(out, out, p4) - - p256Sqr(out, out, 2) - p256Mul(out, out, p2) - - p256Sqr(out, out, 2) - p256Mul(out, out, in) -} - -func (p *P256Point) p256StorePoint(r *[16 * 4 * 3]uint64, index int) { - copy(r[index*12:], p.xyz[:]) + p256Sqr(z, in, 1) + p256Mul(z, in, z) + p256Sqr(z, z, 1) + p256Mul(z, in, z) + p256Sqr(t0, z, 3) + p256Mul(t0, z, t0) + p256Sqr(t1, t0, 6) + p256Mul(t0, t0, t1) + p256Sqr(t0, t0, 3) + p256Mul(z, z, t0) + p256Sqr(t0, z, 1) + p256Mul(t0, in, t0) + p256Sqr(t1, t0, 16) + p256Mul(t0, t0, t1) + p256Sqr(t0, t0, 15) + p256Mul(z, z, t0) + p256Sqr(t0, t0, 17) + p256Mul(t0, in, t0) + p256Sqr(t0, t0, 143) + p256Mul(t0, z, t0) + p256Sqr(t0, t0, 47) + p256Mul(z, z, t0) + p256Sqr(z, z, 2) + p256Mul(out, in, z) } func boothW5(in uint) (int, int) { @@ -499,24 +561,14 @@ func boothW6(in uint) (int, int) { return int(d), int(s & 1) } -func (p *P256Point) p256BaseMult(scalar []uint64) { +func (p *P256Point) p256BaseMult(scalar *p256OrdElement) { + var t0 p256AffinePoint + wvalue := (scalar[0] << 1) & 0x7f sel, sign := boothW6(uint(wvalue)) - p256SelectBase(&p.xyz, p256Precomputed, sel) - p256NegCond(p.xyz[4:8], sign) - - // (This is one, in the Montgomery domain.) - p.xyz[8] = 0x0000000000000001 - p.xyz[9] = 0xffffffff00000000 - p.xyz[10] = 0xffffffffffffffff - p.xyz[11] = 0x00000000fffffffe - - var t0 P256Point - // (This is one, in the Montgomery domain.) - t0.xyz[8] = 0x0000000000000001 - t0.xyz[9] = 0xffffffff00000000 - t0.xyz[10] = 0xffffffffffffffff - t0.xyz[11] = 0x00000000fffffffe + p256SelectAffine(&t0, &p256Precomputed[0], sel) + p.x, p.y, p.z = t0.x, t0.y, p256One + p256NegCond(&p.y, sign) index := uint(5) zero := sel @@ -529,59 +581,59 @@ func (p *P256Point) p256BaseMult(scalar []uint64) { } index += 6 sel, sign = boothW6(uint(wvalue)) - p256SelectBase(&t0.xyz, p256Precomputed[i*32*8*8:], sel) - p256PointAddAffineAsm(p.xyz[0:12], p.xyz[0:12], t0.xyz[0:8], sign, sel, zero) + p256SelectAffine(&t0, &p256Precomputed[i], sel) + p256PointAddAffineAsm(p, p, &t0, sign, sel, zero) zero |= sel } // If the whole scalar was zero, set to the point at infinity. - p256MovCond(p.xyz[:], NewP256Point().xyz[:], p.xyz[:], uint64IsZero(uint64(zero))) + p256MovCond(p, p, NewP256Point(), zero) } -func (p *P256Point) p256ScalarMult(scalar []uint64) { +func (p *P256Point) p256ScalarMult(scalar *p256OrdElement) { // precomp is a table of precomputed points that stores powers of p // from p^1 to p^16. - var precomp [16 * 4 * 3]uint64 + var precomp p256Table var t0, t1, t2, t3 P256Point // Prepare the table - p.p256StorePoint(&precomp, 0) // 1 + precomp[0] = *p // 1 - p256PointDoubleAsm(t0.xyz[:], p.xyz[:]) - p256PointDoubleAsm(t1.xyz[:], t0.xyz[:]) - p256PointDoubleAsm(t2.xyz[:], t1.xyz[:]) - p256PointDoubleAsm(t3.xyz[:], t2.xyz[:]) - t0.p256StorePoint(&precomp, 1) // 2 - t1.p256StorePoint(&precomp, 3) // 4 - t2.p256StorePoint(&precomp, 7) // 8 - t3.p256StorePoint(&precomp, 15) // 16 + p256PointDoubleAsm(&t0, p) + p256PointDoubleAsm(&t1, &t0) + p256PointDoubleAsm(&t2, &t1) + p256PointDoubleAsm(&t3, &t2) + precomp[1] = t0 // 2 + precomp[3] = t1 // 4 + precomp[7] = t2 // 8 + precomp[15] = t3 // 16 - p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:]) - p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:]) - p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:]) - t0.p256StorePoint(&precomp, 2) // 3 - t1.p256StorePoint(&precomp, 4) // 5 - t2.p256StorePoint(&precomp, 8) // 9 + p256PointAddAsm(&t0, &t0, p) + p256PointAddAsm(&t1, &t1, p) + p256PointAddAsm(&t2, &t2, p) + precomp[2] = t0 // 3 + precomp[4] = t1 // 5 + precomp[8] = t2 // 9 - p256PointDoubleAsm(t0.xyz[:], t0.xyz[:]) - p256PointDoubleAsm(t1.xyz[:], t1.xyz[:]) - t0.p256StorePoint(&precomp, 5) // 6 - t1.p256StorePoint(&precomp, 9) // 10 + p256PointDoubleAsm(&t0, &t0) + p256PointDoubleAsm(&t1, &t1) + precomp[5] = t0 // 6 + precomp[9] = t1 // 10 - p256PointAddAsm(t2.xyz[:], t0.xyz[:], p.xyz[:]) - p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:]) - t2.p256StorePoint(&precomp, 6) // 7 - t1.p256StorePoint(&precomp, 10) // 11 + p256PointAddAsm(&t2, &t0, p) + p256PointAddAsm(&t1, &t1, p) + precomp[6] = t2 // 7 + precomp[10] = t1 // 11 - p256PointDoubleAsm(t0.xyz[:], t0.xyz[:]) - p256PointDoubleAsm(t2.xyz[:], t2.xyz[:]) - t0.p256StorePoint(&precomp, 11) // 12 - t2.p256StorePoint(&precomp, 13) // 14 + p256PointDoubleAsm(&t0, &t0) + p256PointDoubleAsm(&t2, &t2) + precomp[11] = t0 // 12 + precomp[13] = t2 // 14 - p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:]) - p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:]) - t0.p256StorePoint(&precomp, 12) // 13 - t2.p256StorePoint(&precomp, 14) // 15 + p256PointAddAsm(&t0, &t0, p) + p256PointAddAsm(&t2, &t2, p) + precomp[12] = t0 // 13 + precomp[14] = t2 // 15 // Start scanning the window from top bit index := uint(254) @@ -590,16 +642,16 @@ func (p *P256Point) p256ScalarMult(scalar []uint64) { wvalue := (scalar[index/64] >> (index % 64)) & 0x3f sel, _ = boothW5(uint(wvalue)) - p256Select(p.xyz[0:12], precomp[0:], sel) + p256Select(p, &precomp, sel) zero := sel for index > 4 { index -= 5 - p256PointDoubleAsm(p.xyz[:], p.xyz[:]) - p256PointDoubleAsm(p.xyz[:], p.xyz[:]) - p256PointDoubleAsm(p.xyz[:], p.xyz[:]) - p256PointDoubleAsm(p.xyz[:], p.xyz[:]) - p256PointDoubleAsm(p.xyz[:], p.xyz[:]) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) if index < 192 { wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f @@ -609,26 +661,26 @@ func (p *P256Point) p256ScalarMult(scalar []uint64) { sel, sign = boothW5(uint(wvalue)) - p256Select(t0.xyz[0:], precomp[0:], sel) - p256NegCond(t0.xyz[4:8], sign) - p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:]) - p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel) - p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero) + p256Select(&t0, &precomp, sel) + p256NegCond(&t0.y, sign) + p256PointAddAsm(&t1, p, &t0) + p256MovCond(&t1, &t1, p, sel) + p256MovCond(p, &t1, &t0, zero) zero |= sel } - p256PointDoubleAsm(p.xyz[:], p.xyz[:]) - p256PointDoubleAsm(p.xyz[:], p.xyz[:]) - p256PointDoubleAsm(p.xyz[:], p.xyz[:]) - p256PointDoubleAsm(p.xyz[:], p.xyz[:]) - p256PointDoubleAsm(p.xyz[:], p.xyz[:]) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) + p256PointDoubleAsm(p, p) wvalue = (scalar[0] << 1) & 0x3f sel, sign = boothW5(uint(wvalue)) - p256Select(t0.xyz[0:], precomp[0:], sel) - p256NegCond(t0.xyz[4:8], sign) - p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:]) - p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel) - p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero) + p256Select(&t0, &precomp, sel) + p256NegCond(&t0.y, sign) + p256PointAddAsm(&t1, p, &t0) + p256MovCond(&t1, &t1, p, sel) + p256MovCond(p, &t1, &t0, zero) } diff --git a/src/crypto/elliptic/internal/nistec/p256_asm_amd64.s b/src/crypto/elliptic/internal/nistec/p256_asm_amd64.s index bd16add2417..84e4cee9039 100644 --- a/src/crypto/elliptic/internal/nistec/p256_asm_amd64.s +++ b/src/crypto/elliptic/internal/nistec/p256_asm_amd64.s @@ -42,14 +42,22 @@ GLOBL p256ord<>(SB), 8, $32 GLOBL p256one<>(SB), 8, $32 /* ---------------------------------------*/ -// func p256LittleToBig(res []byte, in []uint64) +// func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement) +TEXT ·p256OrdLittleToBig(SB),NOSPLIT,$0 + JMP ·p256BigToLittle(SB) +/* ---------------------------------------*/ +// func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte) +TEXT ·p256OrdBigToLittle(SB),NOSPLIT,$0 + JMP ·p256BigToLittle(SB) +/* ---------------------------------------*/ +// func p256LittleToBig(res *[32]byte, in *p256Element) TEXT ·p256LittleToBig(SB),NOSPLIT,$0 JMP ·p256BigToLittle(SB) /* ---------------------------------------*/ -// func p256BigToLittle(res []uint64, in []byte) +// func p256BigToLittle(res *p256Element, in *[32]byte) TEXT ·p256BigToLittle(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr - MOVQ in+24(FP), x_ptr + MOVQ in+8(FP), x_ptr MOVQ (8*0)(x_ptr), acc0 MOVQ (8*1)(x_ptr), acc1 @@ -68,13 +76,12 @@ TEXT ·p256BigToLittle(SB),NOSPLIT,$0 RET /* ---------------------------------------*/ -// func p256MovCond(res, a, b []uint64, cond int) -// If cond == 0 res=b, else res=a +// func p256MovCond(res, a, b *P256Point, cond int) TEXT ·p256MovCond(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr - MOVQ a+24(FP), x_ptr - MOVQ b+48(FP), y_ptr - MOVQ cond+72(FP), X12 + MOVQ a+8(FP), x_ptr + MOVQ b+16(FP), y_ptr + MOVQ cond+24(FP), X12 PXOR X13, X13 PSHUFD $0, X12, X12 @@ -129,10 +136,10 @@ TEXT ·p256MovCond(SB),NOSPLIT,$0 RET /* ---------------------------------------*/ -// func p256NegCond(val []uint64, cond int) +// func p256NegCond(val *p256Element, cond int) TEXT ·p256NegCond(SB),NOSPLIT,$0 MOVQ val+0(FP), res_ptr - MOVQ cond+24(FP), t0 + MOVQ cond+8(FP), t0 // acc = poly MOVQ $-1, acc0 MOVQ p256const0<>(SB), acc1 @@ -162,11 +169,11 @@ TEXT ·p256NegCond(SB),NOSPLIT,$0 RET /* ---------------------------------------*/ -// func p256Sqr(res, in []uint64, n int) +// func p256Sqr(res, in *p256Element, n int) TEXT ·p256Sqr(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr - MOVQ in+24(FP), x_ptr - MOVQ n+48(FP), BX + MOVQ in+8(FP), x_ptr + MOVQ n+16(FP), BX sqrLoop: @@ -326,11 +333,11 @@ sqrLoop: RET /* ---------------------------------------*/ -// func p256Mul(res, in1, in2 []uint64) +// func p256Mul(res, in1, in2 *p256Element) TEXT ·p256Mul(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr - MOVQ in1+24(FP), x_ptr - MOVQ in2+48(FP), y_ptr + MOVQ in1+8(FP), x_ptr + MOVQ in2+16(FP), y_ptr // x * y[0] MOVQ (8*0)(y_ptr), t0 @@ -524,10 +531,10 @@ TEXT ·p256Mul(SB),NOSPLIT,$0 RET /* ---------------------------------------*/ -// func p256FromMont(res, in []uint64) +// func p256FromMont(res, in *p256Element) TEXT ·p256FromMont(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr - MOVQ in+24(FP), x_ptr + MOVQ in+8(FP), x_ptr MOVQ (8*0)(x_ptr), acc0 MOVQ (8*1)(x_ptr), acc1 @@ -602,14 +609,11 @@ TEXT ·p256FromMont(SB),NOSPLIT,$0 RET /* ---------------------------------------*/ -// Constant time point access to arbitrary point table. -// Indexed from 1 to 15, with -1 offset -// (index 0 is implicitly point at infinity) -// func p256Select(point, table []uint64, idx int) +// func p256Select(res *P256Point, table *p256Table, idx int) TEXT ·p256Select(SB),NOSPLIT,$0 - MOVQ idx+48(FP),AX - MOVQ table+24(FP),DI - MOVQ point+0(FP),DX + MOVQ idx+16(FP),AX + MOVQ table+8(FP),DI + MOVQ res+0(FP),DX PXOR X15, X15 // X15 = 0 PCMPEQL X14, X14 // X14 = -1 @@ -667,12 +671,11 @@ loop_select: RET /* ---------------------------------------*/ -// Constant time point access to base point table. -// func p256SelectBase(point *[12]uint64, table string, idx int) -TEXT ·p256SelectBase(SB),NOSPLIT,$0 - MOVQ idx+24(FP),AX +// func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int) +TEXT ·p256SelectAffine(SB),NOSPLIT,$0 + MOVQ idx+16(FP),AX MOVQ table+8(FP),DI - MOVQ point+0(FP),DX + MOVQ res+0(FP),DX PXOR X15, X15 // X15 = 0 PCMPEQL X14, X14 // X14 = -1 @@ -740,11 +743,11 @@ loop_select_base: RET /* ---------------------------------------*/ -// func p256OrdMul(res, in1, in2 []uint64) +// func p256OrdMul(res, in1, in2 *p256OrdElement) TEXT ·p256OrdMul(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr - MOVQ in1+24(FP), x_ptr - MOVQ in2+48(FP), y_ptr + MOVQ in1+8(FP), x_ptr + MOVQ in2+16(FP), y_ptr // x * y[0] MOVQ (8*0)(y_ptr), t0 @@ -1027,11 +1030,11 @@ TEXT ·p256OrdMul(SB),NOSPLIT,$0 RET /* ---------------------------------------*/ -// func p256OrdSqr(res, in []uint64, n int) +// func p256OrdSqr(res, in *p256OrdElement, n int) TEXT ·p256OrdSqr(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr - MOVQ in+24(FP), x_ptr - MOVQ n+48(FP), BX + MOVQ in+8(FP), x_ptr + MOVQ n+16(FP), BX ordSqrLoop: @@ -1729,15 +1732,15 @@ TEXT p256SqrInternal(SB),NOSPLIT,$8 #define sel_save (32*15 + 8)(SP) #define zero_save (32*15 + 8 + 4)(SP) -// func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int) -TEXT ·p256PointAddAffineAsm(SB),0,$512-96 +// func p256PointAddAffineAsm(res, in1 *P256Point, in2 *p256AffinePoint, sign, sel, zero int) +TEXT ·p256PointAddAffineAsm(SB),0,$512-48 // Move input to stack in order to free registers MOVQ res+0(FP), AX - MOVQ in1+24(FP), BX - MOVQ in2+48(FP), CX - MOVQ sign+72(FP), DX - MOVQ sel+80(FP), t1 - MOVQ zero+88(FP), t2 + MOVQ in1+8(FP), BX + MOVQ in2+16(FP), CX + MOVQ sign+24(FP), DX + MOVQ sel+32(FP), t1 + MOVQ zero+40(FP), t2 MOVOU (16*0)(BX), X0 MOVOU (16*1)(BX), X1 @@ -2041,13 +2044,13 @@ TEXT p256IsZero(SB),NOSPLIT,$0 #define rptr (32*20)(SP) #define points_eq (32*20+8)(SP) -//func p256PointAddAsm(res, in1, in2 []uint64) int -TEXT ·p256PointAddAsm(SB),0,$680-80 +//func p256PointAddAsm(res, in1, in2 *P256Point) int +TEXT ·p256PointAddAsm(SB),0,$680-32 // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl // Move input to stack in order to free registers MOVQ res+0(FP), AX - MOVQ in1+24(FP), BX - MOVQ in2+48(FP), CX + MOVQ in1+8(FP), BX + MOVQ in2+16(FP), CX MOVOU (16*0)(BX), X0 MOVOU (16*1)(BX), X1 @@ -2186,7 +2189,7 @@ TEXT ·p256PointAddAsm(SB),0,$680-80 MOVOU X5, (16*5)(AX) MOVQ points_eq, AX - MOVQ AX, ret+72(FP) + MOVQ AX, ret+24(FP) RET #undef x1in @@ -2221,11 +2224,11 @@ TEXT ·p256PointAddAsm(SB),0,$680-80 #define tmp(off) (32*6 + off)(SP) #define rptr (32*7)(SP) -//func p256PointDoubleAsm(res, in []uint64) -TEXT ·p256PointDoubleAsm(SB),NOSPLIT,$256-48 +//func p256PointDoubleAsm(res, in *P256Point) +TEXT ·p256PointDoubleAsm(SB),NOSPLIT,$256-16 // Move input to stack in order to free registers MOVQ res+0(FP), AX - MOVQ in+24(FP), BX + MOVQ in+8(FP), BX MOVOU (16*0)(BX), X0 MOVOU (16*1)(BX), X1 diff --git a/src/crypto/elliptic/internal/nistec/p256_asm_arm64.s b/src/crypto/elliptic/internal/nistec/p256_asm_arm64.s index 2b2355d57cf..1ba5df381b3 100644 --- a/src/crypto/elliptic/internal/nistec/p256_asm_arm64.s +++ b/src/crypto/elliptic/internal/nistec/p256_asm_arm64.s @@ -64,14 +64,22 @@ GLOBL p256ord<>(SB), 8, $32 GLOBL p256one<>(SB), 8, $32 /* ---------------------------------------*/ -// func p256LittleToBig(res []byte, in []uint64) +// func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement) +TEXT ·p256OrdLittleToBig(SB),NOSPLIT,$0 + JMP ·p256BigToLittle(SB) +/* ---------------------------------------*/ +// func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte) +TEXT ·p256OrdBigToLittle(SB),NOSPLIT,$0 + JMP ·p256BigToLittle(SB) +/* ---------------------------------------*/ +// func p256LittleToBig(res *[32]byte, in *p256Element) TEXT ·p256LittleToBig(SB),NOSPLIT,$0 JMP ·p256BigToLittle(SB) /* ---------------------------------------*/ -// func p256BigToLittle(res []uint64, in []byte) +// func p256BigToLittle(res *p256Element, in *[32]byte) TEXT ·p256BigToLittle(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr - MOVD in+24(FP), a_ptr + MOVD in+8(FP), a_ptr LDP 0*16(a_ptr), (acc0, acc1) LDP 1*16(a_ptr), (acc2, acc3) @@ -85,13 +93,13 @@ TEXT ·p256BigToLittle(SB),NOSPLIT,$0 STP (acc1, acc0), 1*16(res_ptr) RET /* ---------------------------------------*/ -// func p256MovCond(res, a, b []uint64, cond int) +// func p256MovCond(res, a, b *P256Point, cond int) // If cond == 0 res=b, else res=a TEXT ·p256MovCond(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr - MOVD a+24(FP), a_ptr - MOVD b+48(FP), b_ptr - MOVD cond+72(FP), R3 + MOVD a+8(FP), a_ptr + MOVD b+16(FP), b_ptr + MOVD cond+24(FP), R3 CMP $0, R3 // Two remarks: @@ -131,10 +139,10 @@ TEXT ·p256MovCond(SB),NOSPLIT,$0 RET /* ---------------------------------------*/ -// func p256NegCond(val []uint64, cond int) +// func p256NegCond(val *p256Element, cond int) TEXT ·p256NegCond(SB),NOSPLIT,$0 MOVD val+0(FP), a_ptr - MOVD cond+24(FP), hlp0 + MOVD cond+8(FP), hlp0 MOVD a_ptr, res_ptr // acc = poly MOVD $-1, acc0 @@ -161,11 +169,11 @@ TEXT ·p256NegCond(SB),NOSPLIT,$0 RET /* ---------------------------------------*/ -// func p256Sqr(res, in []uint64, n int) +// func p256Sqr(res, in *p256Element, n int) TEXT ·p256Sqr(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr - MOVD in+24(FP), a_ptr - MOVD n+48(FP), b_ptr + MOVD in+8(FP), a_ptr + MOVD n+16(FP), b_ptr MOVD p256const0<>(SB), const0 MOVD p256const1<>(SB), const1 @@ -186,11 +194,11 @@ sqrLoop: STP (y2, y3), 1*16(res_ptr) RET /* ---------------------------------------*/ -// func p256Mul(res, in1, in2 []uint64) +// func p256Mul(res, in1, in2 *p256Element) TEXT ·p256Mul(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr - MOVD in1+24(FP), a_ptr - MOVD in2+48(FP), b_ptr + MOVD in1+8(FP), a_ptr + MOVD in2+16(FP), b_ptr MOVD p256const0<>(SB), const0 MOVD p256const1<>(SB), const1 @@ -207,10 +215,10 @@ TEXT ·p256Mul(SB),NOSPLIT,$0 STP (y2, y3), 1*16(res_ptr) RET /* ---------------------------------------*/ -// func p256FromMont(res, in []uint64) +// func p256FromMont(res, in *p256Element) TEXT ·p256FromMont(SB),NOSPLIT,$0 MOVD res+0(FP), res_ptr - MOVD in+24(FP), a_ptr + MOVD in+8(FP), a_ptr MOVD p256const0<>(SB), const0 MOVD p256const1<>(SB), const1 @@ -266,14 +274,11 @@ TEXT ·p256FromMont(SB),NOSPLIT,$0 RET /* ---------------------------------------*/ -// Constant time point access to arbitrary point table. -// Indexed from 1 to 15, with -1 offset -// (index 0 is implicitly point at infinity) -// func p256Select(point, table []uint64, idx int) +// func p256Select(res *P256Point, table *p256Table, idx int) TEXT ·p256Select(SB),NOSPLIT,$0 - MOVD idx+48(FP), const0 - MOVD table+24(FP), b_ptr - MOVD point+0(FP), res_ptr + MOVD idx+16(FP), const0 + MOVD table+8(FP), b_ptr + MOVD res+0(FP), res_ptr EOR x0, x0, x0 EOR x1, x1, x1 @@ -323,12 +328,11 @@ loop_select: STP (t2, t3), 5*16(res_ptr) RET /* ---------------------------------------*/ -// Constant time point access to base point table. -// func p256SelectBase(point *[12]uint64, table string, idx int) -TEXT ·p256SelectBase(SB),NOSPLIT,$0 - MOVD idx+24(FP), t0 - MOVD table_base+8(FP), t1 - MOVD point+0(FP), res_ptr +// func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int) +TEXT ·p256SelectAffine(SB),NOSPLIT,$0 + MOVD idx+16(FP), t0 + MOVD table+8(FP), t1 + MOVD res+0(FP), res_ptr EOR x0, x0, x0 EOR x1, x1, x1 @@ -366,10 +370,10 @@ loop_select: STP (y2, y3), 3*16(res_ptr) RET /* ---------------------------------------*/ -// func p256OrdSqr(res, in []uint64, n int) +// func p256OrdSqr(res, in *p256OrdElement, n int) TEXT ·p256OrdSqr(SB),NOSPLIT,$0 - MOVD in+24(FP), a_ptr - MOVD n+48(FP), b_ptr + MOVD in+8(FP), a_ptr + MOVD n+16(FP), b_ptr MOVD p256ordK0<>(SB), hlp1 LDP p256ord<>+0x00(SB), (const0, const1) @@ -565,10 +569,10 @@ ordSqrLoop: RET /* ---------------------------------------*/ -// func p256OrdMul(res, in1, in2 []uint64) +// func p256OrdMul(res, in1, in2 *p256OrdElement) TEXT ·p256OrdMul(SB),NOSPLIT,$0 - MOVD in1+24(FP), a_ptr - MOVD in2+48(FP), b_ptr + MOVD in1+8(FP), a_ptr + MOVD in2+16(FP), b_ptr MOVD p256ordK0<>(SB), hlp1 LDP p256ord<>+0x00(SB), (const0, const1) @@ -1091,13 +1095,13 @@ TEXT p256MulInternal<>(SB),NOSPLIT,$0 #define u1(off) (32*10 + 8 + off)(RSP) #define u2(off) (32*11 + 8 + off)(RSP) -// func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int) -TEXT ·p256PointAddAffineAsm(SB),0,$264-96 - MOVD in1+24(FP), a_ptr - MOVD in2+48(FP), b_ptr - MOVD sign+72(FP), hlp0 - MOVD sel+80(FP), hlp1 - MOVD zero+88(FP), t2 +// func p256PointAddAffineAsm(res, in1 *P256Point, in2 *p256AffinePoint, sign, sel, zero int) +TEXT ·p256PointAddAffineAsm(SB),0,$264-48 + MOVD in1+8(FP), a_ptr + MOVD in2+16(FP), b_ptr + MOVD sign+24(FP), hlp0 + MOVD sel+32(FP), hlp1 + MOVD zero+40(FP), t2 MOVD $1, t0 CMP $0, t2 @@ -1288,10 +1292,10 @@ TEXT ·p256PointAddAffineAsm(SB),0,$264-96 #define zsqr(off) (32*2 + 8 + off)(RSP) #define tmp(off) (32*3 + 8 + off)(RSP) -//func p256PointDoubleAsm(res, in []uint64) -TEXT ·p256PointDoubleAsm(SB),NOSPLIT,$136-48 +//func p256PointDoubleAsm(res, in *P256Point) +TEXT ·p256PointDoubleAsm(SB),NOSPLIT,$136-16 MOVD res+0(FP), res_ptr - MOVD in+24(FP), a_ptr + MOVD in+8(FP), a_ptr MOVD p256const0<>(SB), const0 MOVD p256const1<>(SB), const1 @@ -1388,12 +1392,12 @@ TEXT ·p256PointDoubleAsm(SB),NOSPLIT,$136-48 #define x3out(off) (off)(b_ptr) #define y3out(off) (off + 32)(b_ptr) #define z3out(off) (off + 64)(b_ptr) -//func p256PointAddAsm(res, in1, in2 []uint64) int -TEXT ·p256PointAddAsm(SB),0,$392-80 +// func p256PointAddAsm(res, in1, in2 *P256Point) int +TEXT ·p256PointAddAsm(SB),0,$392-32 // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl // Move input to stack in order to free registers - MOVD in1+24(FP), a_ptr - MOVD in2+48(FP), b_ptr + MOVD in1+8(FP), a_ptr + MOVD in2+16(FP), b_ptr MOVD p256const0<>(SB), const0 MOVD p256const1<>(SB), const1 @@ -1524,6 +1528,6 @@ TEXT ·p256PointAddAsm(SB),0,$392-80 STx(y3out) MOVD hlp1, R0 - MOVD R0, ret+72(FP) + MOVD R0, ret+24(FP) RET diff --git a/src/crypto/elliptic/internal/nistec/p256_asm_table_test.go b/src/crypto/elliptic/internal/nistec/p256_asm_table_test.go index aab39e4ffa3..dc26e4b70b7 100644 --- a/src/crypto/elliptic/internal/nistec/p256_asm_table_test.go +++ b/src/crypto/elliptic/internal/nistec/p256_asm_table_test.go @@ -7,58 +7,43 @@ package nistec import ( - "encoding/binary" - "reflect" + "fmt" "testing" ) func TestP256PrecomputedTable(t *testing.T) { + base := NewP256Generator() - basePoint := []uint64{ - 0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510, 0x18905f76a53755c6, - 0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325, 0x8571ff1825885d85, - 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe, - } - t1 := make([]uint64, 12) - t2 := make([]uint64, 12) - copy(t2, basePoint) + for i := 0; i < 43; i++ { + t.Run(fmt.Sprintf("table[%d]", i), func(t *testing.T) { + testP256AffineTable(t, base, &p256Precomputed[i]) + }) - zInv := make([]uint64, 4) - zInvSq := make([]uint64, 4) - for j := 0; j < 32; j++ { - copy(t1, t2) - for i := 0; i < 43; i++ { - // The window size is 6 so we need to double 6 times. - if i != 0 { - for k := 0; k < 6; k++ { - p256PointDoubleAsm(t1, t1) - } - } - // Convert the point to affine form. (Its values are - // still in Montgomery form however.) - p256Inverse(zInv, t1[8:12]) - p256Sqr(zInvSq, zInv, 1) - p256Mul(zInv, zInv, zInvSq) - - p256Mul(t1[:4], t1[:4], zInvSq) - p256Mul(t1[4:8], t1[4:8], zInv) - - copy(t1[8:12], basePoint[8:12]) - - buf := make([]byte, 8*8) - for i, u := range t1[:8] { - binary.LittleEndian.PutUint64(buf[i*8:i*8+8], u) - } - start := i*32*8*8 + j*8*8 - if got, want := p256Precomputed[start:start+64], string(buf); !reflect.DeepEqual(got, want) { - t.Fatalf("Unexpected table entry at [%d][%d:%d]: got %v, want %v", i, j*8, (j*8)+8, got, want) - } - } - if j == 0 { - p256PointDoubleAsm(t2, basePoint) - } else { - p256PointAddAsm(t2, t2, basePoint) + for k := 0; k < 6; k++ { + base.Double(base) + } + } +} + +func testP256AffineTable(t *testing.T, base *P256Point, table *p256AffineTable) { + p := NewP256Point() + zInv := new(p256Element) + zInvSq := new(p256Element) + + for j := 0; j < 32; j++ { + p.Add(p, base) + + // Convert p to affine coordinates. + p256Inverse(zInv, &p.z) + p256Sqr(zInvSq, zInv, 1) + p256Mul(zInv, zInv, zInvSq) + + p256Mul(&p.x, &p.x, zInvSq) + p256Mul(&p.y, &p.y, zInv) + p.z = p256One + + if p256Equal(&table[j].x, &p.x) != 1 || p256Equal(&table[j].y, &p.y) != 1 { + t.Fatalf("incorrect table entry at index %d", j) } } - } diff --git a/src/crypto/elliptic/internal/nistec/p256_asm_test.go b/src/crypto/elliptic/internal/nistec/p256_asm_test.go new file mode 100644 index 00000000000..5d05561b703 --- /dev/null +++ b/src/crypto/elliptic/internal/nistec/p256_asm_test.go @@ -0,0 +1,94 @@ +// Copyright 2022 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build amd64 || arm64 + +package nistec_test + +import ( + "bytes" + "crypto/elliptic" + "crypto/elliptic/internal/nistec" + "math/big" + "testing" +) + +func TestP256OrdInverse(t *testing.T) { + N := elliptic.P256().Params().N + + // inv(0) is expected to be 0. + zero := make([]byte, 32) + out, err := nistec.P256OrdInverse(zero) + if err != nil { + t.Fatal(err) + } + if !bytes.Equal(out, zero) { + t.Error("unexpected output for inv(0)") + } + + // inv(N) is also 0 mod N. + input := make([]byte, 32) + N.FillBytes(input) + out, err = nistec.P256OrdInverse(input) + if err != nil { + t.Fatal(err) + } + if !bytes.Equal(out, zero) { + t.Error("unexpected output for inv(N)") + } + if !bytes.Equal(input, N.Bytes()) { + t.Error("input was modified") + } + + // Check inv(1) and inv(N+1) against math/big + exp := new(big.Int).ModInverse(big.NewInt(1), N).FillBytes(make([]byte, 32)) + big.NewInt(1).FillBytes(input) + out, err = nistec.P256OrdInverse(input) + if err != nil { + t.Fatal(err) + } + if !bytes.Equal(out, exp) { + t.Error("unexpected output for inv(1)") + } + new(big.Int).Add(N, big.NewInt(1)).FillBytes(input) + out, err = nistec.P256OrdInverse(input) + if err != nil { + t.Fatal(err) + } + if !bytes.Equal(out, exp) { + t.Error("unexpected output for inv(N+1)") + } + + // Check inv(20) and inv(N+20) against math/big + exp = new(big.Int).ModInverse(big.NewInt(20), N).FillBytes(make([]byte, 32)) + big.NewInt(20).FillBytes(input) + out, err = nistec.P256OrdInverse(input) + if err != nil { + t.Fatal(err) + } + if !bytes.Equal(out, exp) { + t.Error("unexpected output for inv(20)") + } + new(big.Int).Add(N, big.NewInt(20)).FillBytes(input) + out, err = nistec.P256OrdInverse(input) + if err != nil { + t.Fatal(err) + } + if !bytes.Equal(out, exp) { + t.Error("unexpected output for inv(N+20)") + } + + // Check inv(2^256-1) against math/big + bigInput := new(big.Int).Lsh(big.NewInt(1), 256) + bigInput.Sub(bigInput, big.NewInt(1)) + exp = new(big.Int).ModInverse(bigInput, N).FillBytes(make([]byte, 32)) + bigInput.FillBytes(input) + out, err = nistec.P256OrdInverse(input) + if err != nil { + t.Fatal(err) + } + if !bytes.Equal(out, exp) { + t.Error("unexpected output for inv(2^256-1)") + } +}