mirror of
https://github.com/golang/go
synced 2024-11-20 01:04:40 -07:00
math/big: make Rat.Denom() always return a reference
The documentation says so, but in the case of a normalized integral Rat, the denominator was a new value. Changed the internal representation to use an Int to represent the denominator (with the sign ignored), so a reference to it can always be returned. Clarified documentation and added test cases. Fixes #3521. R=golang-dev, rsc CC=golang-dev https://golang.org/cl/6237045
This commit is contained in:
parent
3d3b4906f9
commit
07612b8db0
@ -16,8 +16,10 @@ import (
|
||||
// A Rat represents a quotient a/b of arbitrary precision.
|
||||
// The zero value for a Rat represents the value 0.
|
||||
type Rat struct {
|
||||
a Int
|
||||
b nat // len(b) == 0 acts like b == 1
|
||||
// To make zero values for Rat work w/o initialization,
|
||||
// a zero value of b (len(b) == 0) acts like b == 1.
|
||||
// a.neg determines the sign of the Rat, b.neg is ignored.
|
||||
a, b Int
|
||||
}
|
||||
|
||||
// NewRat creates a new Rat with numerator a and denominator b.
|
||||
@ -36,7 +38,7 @@ func (z *Rat) SetFrac(a, b *Int) *Rat {
|
||||
babs = nat(nil).set(babs) // make a copy
|
||||
}
|
||||
z.a.abs = z.a.abs.set(a.abs)
|
||||
z.b = z.b.set(babs)
|
||||
z.b.abs = z.b.abs.set(babs)
|
||||
return z.norm()
|
||||
}
|
||||
|
||||
@ -50,21 +52,21 @@ func (z *Rat) SetFrac64(a, b int64) *Rat {
|
||||
b = -b
|
||||
z.a.neg = !z.a.neg
|
||||
}
|
||||
z.b = z.b.setUint64(uint64(b))
|
||||
z.b.abs = z.b.abs.setUint64(uint64(b))
|
||||
return z.norm()
|
||||
}
|
||||
|
||||
// SetInt sets z to x (by making a copy of x) and returns z.
|
||||
func (z *Rat) SetInt(x *Int) *Rat {
|
||||
z.a.Set(x)
|
||||
z.b = z.b.make(0)
|
||||
z.b.abs = z.b.abs.make(0)
|
||||
return z
|
||||
}
|
||||
|
||||
// SetInt64 sets z to x and returns z.
|
||||
func (z *Rat) SetInt64(x int64) *Rat {
|
||||
z.a.SetInt64(x)
|
||||
z.b = z.b.make(0)
|
||||
z.b.abs = z.b.abs.make(0)
|
||||
return z
|
||||
}
|
||||
|
||||
@ -72,7 +74,7 @@ func (z *Rat) SetInt64(x int64) *Rat {
|
||||
func (z *Rat) Set(x *Rat) *Rat {
|
||||
if z != x {
|
||||
z.a.Set(&x.a)
|
||||
z.b = z.b.set(x.b)
|
||||
z.b.Set(&x.b)
|
||||
}
|
||||
return z
|
||||
}
|
||||
@ -97,15 +99,15 @@ func (z *Rat) Inv(x *Rat) *Rat {
|
||||
panic("division by zero")
|
||||
}
|
||||
z.Set(x)
|
||||
a := z.b
|
||||
a := z.b.abs
|
||||
if len(a) == 0 {
|
||||
a = a.setWord(1) // materialize numerator
|
||||
a = a.set(natOne) // materialize numerator
|
||||
}
|
||||
b := z.a.abs
|
||||
if b.cmp(natOne) == 0 {
|
||||
b = b.make(0) // normalize denominator
|
||||
}
|
||||
z.a.abs, z.b = a, b // sign doesn't change
|
||||
z.a.abs, z.b.abs = a, b // sign doesn't change
|
||||
return z
|
||||
}
|
||||
|
||||
@ -121,24 +123,26 @@ func (x *Rat) Sign() int {
|
||||
|
||||
// IsInt returns true if the denominator of x is 1.
|
||||
func (x *Rat) IsInt() bool {
|
||||
return len(x.b) == 0 || x.b.cmp(natOne) == 0
|
||||
return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
|
||||
}
|
||||
|
||||
// Num returns the numerator of x; it may be <= 0.
|
||||
// The result is a reference to x's numerator; it
|
||||
// may change if a new value is assigned to x.
|
||||
// may change if a new value is assigned to x, and vice versa.
|
||||
// The sign of the numerator corresponds to the sign of x.
|
||||
func (x *Rat) Num() *Int {
|
||||
return &x.a
|
||||
}
|
||||
|
||||
// Denom returns the denominator of x; it is always > 0.
|
||||
// The result is a reference to x's denominator; it
|
||||
// may change if a new value is assigned to x.
|
||||
// may change if a new value is assigned to x, and vice versa.
|
||||
func (x *Rat) Denom() *Int {
|
||||
if len(x.b) == 0 {
|
||||
return &Int{abs: nat{1}}
|
||||
x.b.neg = false // the result is always >= 0
|
||||
if len(x.b.abs) == 0 {
|
||||
x.b.abs = x.b.abs.set(natOne) // materialize denominator
|
||||
}
|
||||
return &Int{abs: x.b}
|
||||
return &x.b
|
||||
}
|
||||
|
||||
func gcd(x, y nat) nat {
|
||||
@ -160,16 +164,20 @@ func (z *Rat) norm() *Rat {
|
||||
case len(z.a.abs) == 0:
|
||||
// z == 0 - normalize sign and denominator
|
||||
z.a.neg = false
|
||||
z.b = z.b.make(0)
|
||||
case len(z.b) == 0:
|
||||
z.b.abs = z.b.abs.make(0)
|
||||
case len(z.b.abs) == 0:
|
||||
// z is normalized int - nothing to do
|
||||
case z.b.cmp(natOne) == 0:
|
||||
case z.b.abs.cmp(natOne) == 0:
|
||||
// z is int - normalize denominator
|
||||
z.b = z.b.make(0)
|
||||
z.b.abs = z.b.abs.make(0)
|
||||
default:
|
||||
if f := gcd(z.a.abs, z.b); f.cmp(natOne) != 0 {
|
||||
if f := gcd(z.a.abs, z.b.abs); f.cmp(natOne) != 0 {
|
||||
z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f)
|
||||
z.b, _ = z.b.div(nil, z.b, f)
|
||||
z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f)
|
||||
if z.b.abs.cmp(natOne) == 0 {
|
||||
// z is int - normalize denominator
|
||||
z.b.abs = z.b.abs.make(0)
|
||||
}
|
||||
}
|
||||
}
|
||||
return z
|
||||
@ -207,31 +215,31 @@ func scaleDenom(x *Int, f nat) *Int {
|
||||
// +1 if x > y
|
||||
//
|
||||
func (x *Rat) Cmp(y *Rat) int {
|
||||
return scaleDenom(&x.a, y.b).Cmp(scaleDenom(&y.a, x.b))
|
||||
return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs))
|
||||
}
|
||||
|
||||
// Add sets z to the sum x+y and returns z.
|
||||
func (z *Rat) Add(x, y *Rat) *Rat {
|
||||
a1 := scaleDenom(&x.a, y.b)
|
||||
a2 := scaleDenom(&y.a, x.b)
|
||||
a1 := scaleDenom(&x.a, y.b.abs)
|
||||
a2 := scaleDenom(&y.a, x.b.abs)
|
||||
z.a.Add(a1, a2)
|
||||
z.b = mulDenom(z.b, x.b, y.b)
|
||||
z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
|
||||
return z.norm()
|
||||
}
|
||||
|
||||
// Sub sets z to the difference x-y and returns z.
|
||||
func (z *Rat) Sub(x, y *Rat) *Rat {
|
||||
a1 := scaleDenom(&x.a, y.b)
|
||||
a2 := scaleDenom(&y.a, x.b)
|
||||
a1 := scaleDenom(&x.a, y.b.abs)
|
||||
a2 := scaleDenom(&y.a, x.b.abs)
|
||||
z.a.Sub(a1, a2)
|
||||
z.b = mulDenom(z.b, x.b, y.b)
|
||||
z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
|
||||
return z.norm()
|
||||
}
|
||||
|
||||
// Mul sets z to the product x*y and returns z.
|
||||
func (z *Rat) Mul(x, y *Rat) *Rat {
|
||||
z.a.Mul(&x.a, &y.a)
|
||||
z.b = mulDenom(z.b, x.b, y.b)
|
||||
z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
|
||||
return z.norm()
|
||||
}
|
||||
|
||||
@ -241,10 +249,10 @@ func (z *Rat) Quo(x, y *Rat) *Rat {
|
||||
if len(y.a.abs) == 0 {
|
||||
panic("division by zero")
|
||||
}
|
||||
a := scaleDenom(&x.a, y.b)
|
||||
b := scaleDenom(&y.a, x.b)
|
||||
a := scaleDenom(&x.a, y.b.abs)
|
||||
b := scaleDenom(&y.a, x.b.abs)
|
||||
z.a.abs = a.abs
|
||||
z.b = b.abs
|
||||
z.b.abs = b.abs
|
||||
z.a.neg = a.neg != b.neg
|
||||
return z.norm()
|
||||
}
|
||||
@ -286,7 +294,7 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
|
||||
}
|
||||
s = s[sep+1:]
|
||||
var err error
|
||||
if z.b, _, err = z.b.scan(strings.NewReader(s), 10); err != nil {
|
||||
if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil {
|
||||
return nil, false
|
||||
}
|
||||
return z.norm(), true
|
||||
@ -317,11 +325,11 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
|
||||
}
|
||||
powTen := nat(nil).expNN(natTen, exp.abs, nil)
|
||||
if exp.neg {
|
||||
z.b = powTen
|
||||
z.b.abs = powTen
|
||||
z.norm()
|
||||
} else {
|
||||
z.a.abs = z.a.abs.mul(z.a.abs, powTen)
|
||||
z.b = z.b.make(0)
|
||||
z.b.abs = z.b.abs.make(0)
|
||||
}
|
||||
|
||||
return z, true
|
||||
@ -330,8 +338,8 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
|
||||
// String returns a string representation of z in the form "a/b" (even if b == 1).
|
||||
func (x *Rat) String() string {
|
||||
s := "/1"
|
||||
if len(x.b) != 0 {
|
||||
s = "/" + x.b.decimalString()
|
||||
if len(x.b.abs) != 0 {
|
||||
s = "/" + x.b.abs.decimalString()
|
||||
}
|
||||
return x.a.String() + s
|
||||
}
|
||||
@ -355,9 +363,9 @@ func (x *Rat) FloatString(prec int) string {
|
||||
}
|
||||
return s
|
||||
}
|
||||
// x.b != 0
|
||||
// x.b.abs != 0
|
||||
|
||||
q, r := nat(nil).div(nat(nil), x.a.abs, x.b)
|
||||
q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
|
||||
|
||||
p := natOne
|
||||
if prec > 0 {
|
||||
@ -365,11 +373,11 @@ func (x *Rat) FloatString(prec int) string {
|
||||
}
|
||||
|
||||
r = r.mul(r, p)
|
||||
r, r2 := r.div(nat(nil), r, x.b)
|
||||
r, r2 := r.div(nat(nil), r, x.b.abs)
|
||||
|
||||
// see if we need to round up
|
||||
r2 = r2.add(r2, r2)
|
||||
if x.b.cmp(r2) <= 0 {
|
||||
if x.b.abs.cmp(r2) <= 0 {
|
||||
r = r.add(r, natOne)
|
||||
if r.cmp(p) >= 0 {
|
||||
q = nat(nil).add(q, natOne)
|
||||
@ -396,8 +404,8 @@ const ratGobVersion byte = 1
|
||||
|
||||
// GobEncode implements the gob.GobEncoder interface.
|
||||
func (x *Rat) GobEncode() ([]byte, error) {
|
||||
buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
|
||||
i := x.b.bytes(buf)
|
||||
buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
|
||||
i := x.b.abs.bytes(buf)
|
||||
j := x.a.abs.bytes(buf[0:i])
|
||||
n := i - j
|
||||
if int(uint32(n)) != n {
|
||||
@ -427,6 +435,6 @@ func (z *Rat) GobDecode(buf []byte) error {
|
||||
i := j + binary.BigEndian.Uint32(buf[j-4:j])
|
||||
z.a.neg = b&1 != 0
|
||||
z.a.abs = z.a.abs.setBytes(buf[j:i])
|
||||
z.b = z.b.setBytes(buf[i:])
|
||||
z.b.abs = z.b.abs.setBytes(buf[i:])
|
||||
return nil
|
||||
}
|
||||
|
@ -443,3 +443,56 @@ func TestIssue2379(t *testing.T) {
|
||||
t.Errorf("5) got %s want %s", x, q)
|
||||
}
|
||||
}
|
||||
|
||||
func TestIssue3521(t *testing.T) {
|
||||
a := new(Int)
|
||||
b := new(Int)
|
||||
a.SetString("64375784358435883458348587", 0)
|
||||
b.SetString("4789759874531", 0)
|
||||
|
||||
// 0) a raw zero value has 1 as denominator
|
||||
zero := new(Rat)
|
||||
one := NewInt(1)
|
||||
if zero.Denom().Cmp(one) != 0 {
|
||||
t.Errorf("0) got %s want %s", zero.Denom(), one)
|
||||
}
|
||||
|
||||
// 1a) a zero value remains zero independent of denominator
|
||||
x := new(Rat)
|
||||
x.Denom().Set(new(Int).Neg(b))
|
||||
if x.Cmp(zero) != 0 {
|
||||
t.Errorf("1a) got %s want %s", x, zero)
|
||||
}
|
||||
|
||||
// 1b) a zero value may have a denominator != 0 and != 1
|
||||
x.Num().Set(a)
|
||||
qab := new(Rat).SetFrac(a, b)
|
||||
if x.Cmp(qab) != 0 {
|
||||
t.Errorf("1b) got %s want %s", x, qab)
|
||||
}
|
||||
|
||||
// 2a) an integral value becomes a fraction depending on denominator
|
||||
x.SetFrac64(10, 2)
|
||||
x.Denom().SetInt64(3)
|
||||
q53 := NewRat(5, 3)
|
||||
if x.Cmp(q53) != 0 {
|
||||
t.Errorf("2a) got %s want %s", x, q53)
|
||||
}
|
||||
|
||||
// 2b) an integral value becomes a fraction depending on denominator
|
||||
x = NewRat(10, 2)
|
||||
x.Denom().SetInt64(3)
|
||||
if x.Cmp(q53) != 0 {
|
||||
t.Errorf("2b) got %s want %s", x, q53)
|
||||
}
|
||||
|
||||
// 3) changing the numerator/denominator of a Rat changes the Rat
|
||||
x.SetFrac(a, b)
|
||||
a = x.Num()
|
||||
b = x.Denom()
|
||||
a.SetInt64(5)
|
||||
b.SetInt64(3)
|
||||
if x.Cmp(q53) != 0 {
|
||||
t.Errorf("3) got %s want %s", x, q53)
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user