1
0
mirror of https://github.com/golang/go synced 2024-11-21 21:34:40 -07:00

math: faster Sincos

Sincos via sincos.go is 35.4 ns/op, via sincos_amd64.s is 37.4 ns/op on 2.53 GHz Intel Core 2 Duo (Mac OS X).

R=rsc, golang-dev
CC=golang-dev
https://golang.org/cl/5447045
This commit is contained in:
Charles L. Dorian 2011-11-30 15:11:44 -05:00 committed by Russ Cox
parent e62622b1b1
commit 06e635e46d
2 changed files with 58 additions and 2 deletions

View File

@ -15,7 +15,6 @@ OFILES_amd64=\
exp_amd64.$O\
hypot_amd64.$O\
log_amd64.$O\
sincos_amd64.$O\
sqrt_amd64.$O\
OFILES_386=\

View File

@ -4,9 +4,66 @@
package math
// Coefficients _sin[] and _cos[] are found in pkg/math/sin.go.
// Sincos(x) returns Sin(x), Cos(x).
//
// Special conditions are:
// Sincos(±0) = ±0, 1
// Sincos(±Inf) = NaN, NaN
// Sincos(NaN) = NaN, NaN
func Sincos(x float64) (sin, cos float64) { return Sin(x), Cos(x) }
func Sincos(x float64) (sin, cos float64) {
const (
PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000,
PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170,
M4PI = 1.273239544735162542821171882678754627704620361328125 // 4/pi
)
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
// special cases
switch {
case x == 0:
return x, 1 // return ±0.0, 1.0
case x != x || x < -MaxFloat64 || x > MaxFloat64: // IsNaN(x) || IsInf(x, 0):
return NaN(), NaN()
}
// make argument positive
sinSign, cosSign := false, false
if x < 0 {
x = -x
sinSign = true
}
j := int64(x * M4PI) // integer part of x/(Pi/4), as integer for tests on the phase angle
y := float64(j) // integer part of x/(Pi/4), as float
if j&1 == 1 { // map zeros to origin
j += 1
y += 1
}
j &= 7 // octant modulo 2Pi radians (360 degrees)
if j > 3 { // reflect in x axis
j -= 4
sinSign, cosSign = !sinSign, !cosSign
}
if j > 1 {
cosSign = !cosSign
}
z := ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
zz := z * z
cos = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
sin = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
if j == 1 || j == 2 {
sin, cos = cos, sin
}
if cosSign {
cos = -cos
}
if sinSign {
sin = -sin
}
return
}