1
0
mirror of https://github.com/golang/go synced 2024-11-21 23:44:39 -07:00

strconv: faster FormatFloat(x, *, -1, 64) using Grisu3 algorithm.

The implementation is similar to the one from the double-conversion
library used in the Chrome V8 engine.

                            old ns/op   new ns/op  speedup
BenchmarkAppendFloatDecimal      591         480      1.2x
BenchmarkAppendFloat            2956         486      6.1x
BenchmarkAppendFloatExp        10622         503     21.1x
BenchmarkAppendFloatNegExp     40343         483     83.5x
BenchmarkAppendFloatBig         2798         664      4.2x

See F. Loitsch, ``Printing Floating-Point Numbers Quickly and
Accurately with Integers'', Proceedings of the ACM, 2010.

R=rsc
CC=golang-dev, remy
https://golang.org/cl/5502079
This commit is contained in:
Rémy Oudompheng 2012-01-13 23:24:33 +01:00
parent a5950df89e
commit 0575cd9de4
3 changed files with 257 additions and 20 deletions

View File

@ -191,6 +191,36 @@ func (f *extFloat) Assign(x float64) {
f.exp -= 64
}
// AssignComputeBounds sets f to the value of x and returns
// lower, upper such that any number in the closed interval
// [lower, upper] is converted back to x.
func (f *extFloat) AssignComputeBounds(x float64) (lower, upper extFloat) {
// Special cases.
bits := math.Float64bits(x)
flt := &float64info
neg := bits>>(flt.expbits+flt.mantbits) != 0
expBiased := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
mant := bits & (uint64(1)<<flt.mantbits - 1)
if expBiased == 0 {
// denormalized.
f.mant = mant
f.exp = 1 + flt.bias - int(flt.mantbits)
} else {
f.mant = mant | 1<<flt.mantbits
f.exp = expBiased + flt.bias - int(flt.mantbits)
}
f.neg = neg
upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
if mant != 0 || expBiased == 1 {
lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
} else {
lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
}
return
}
// Normalize normalizes f so that the highest bit of the mantissa is
// set, and returns the number by which the mantissa was left-shifted.
func (f *extFloat) Normalize() uint {
@ -309,3 +339,163 @@ func (f *extFloat) AssignDecimal(d *decimal) (ok bool) {
}
return true
}
// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
// f by an approximate power of ten 10^-exp, and returns exp10, so
// that f*10^exp10 has the same value as the old f, up to an ulp,
// as well as the index of 10^-exp in the powersOfTen table.
// The arguments expMin and expMax constrain the final value of the
// binary exponent of f.
func (f *extFloat) frexp10(expMin, expMax int) (exp10, index int) {
// it is illegal to call this function with a too restrictive exponent range.
if expMax-expMin <= 25 {
panic("strconv: invalid exponent range")
}
// Find power of ten such that x * 10^n has a binary exponent
// between expMin and expMax
approxExp10 := -(f.exp + 100) * 28 / 93 // log(10)/log(2) is close to 93/28.
i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
Loop:
for {
exp := f.exp + powersOfTen[i].exp + 64
switch {
case exp < expMin:
i++
case exp > expMax:
i--
default:
break Loop
}
}
// Apply the desired decimal shift on f. It will have exponent
// in the desired range. This is multiplication by 10^-exp10.
f.Multiply(powersOfTen[i])
return -(firstPowerOfTen + i*stepPowerOfTen), i
}
// frexp10Many applies a common shift by a power of ten to a, b, c.
func frexp10Many(expMin, expMax int, a, b, c *extFloat) (exp10 int) {
exp10, i := c.frexp10(expMin, expMax)
a.Multiply(powersOfTen[i])
b.Multiply(powersOfTen[i])
return
}
// ShortestDecimal stores in d the shortest decimal representation of f
// which belongs to the open interval (lower, upper), where f is supposed
// to lie. It returns false whenever the result is unsure. The implementation
// uses the Grisu3 algorithm.
func (f *extFloat) ShortestDecimal(d *decimal, lower, upper *extFloat) bool {
if f.mant == 0 {
d.d[0] = '0'
d.nd = 1
d.dp = 0
d.neg = f.neg
}
const minExp = -60
const maxExp = -32
upper.Normalize()
// Uniformize exponents.
if f.exp > upper.exp {
f.mant <<= uint(f.exp - upper.exp)
f.exp = upper.exp
}
if lower.exp > upper.exp {
lower.mant <<= uint(lower.exp - upper.exp)
lower.exp = upper.exp
}
exp10 := frexp10Many(minExp, maxExp, lower, f, upper)
// Take a safety margin due to rounding in frexp10Many, but we lose precision.
upper.mant++
lower.mant--
// The shortest representation of f is either rounded up or down, but
// in any case, it is a truncation of upper.
shift := uint(-upper.exp)
integer := uint32(upper.mant >> shift)
fraction := upper.mant - (uint64(integer) << shift)
// How far we can go down from upper until the result is wrong.
allowance := upper.mant - lower.mant
// How far we should go to get a very precise result.
targetDiff := upper.mant - f.mant
// Count integral digits: there are at most 10.
var integerDigits int
for i, pow := range uint64pow10 {
if uint64(integer) >= pow {
integerDigits = i + 1
}
}
for i := 0; i < integerDigits; i++ {
pow := uint64pow10[integerDigits-i-1]
digit := integer / uint32(pow)
d.d[i] = byte(digit + '0')
integer -= digit * uint32(pow)
// evaluate whether we should stop.
if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
d.nd = i + 1
d.dp = integerDigits + exp10
d.neg = f.neg
// Sometimes allowance is so large the last digit might need to be
// decremented to get closer to f.
return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
}
}
d.nd = integerDigits
d.dp = d.nd + exp10
d.neg = f.neg
// Compute digits of the fractional part. At each step fraction does not
// overflow. The choice of minExp implies that fraction is less than 2^60.
var digit int
multiplier := uint64(1)
for {
fraction *= 10
multiplier *= 10
digit = int(fraction >> shift)
d.d[d.nd] = byte(digit + '0')
d.nd++
fraction -= uint64(digit) << shift
if fraction < allowance*multiplier {
// We are in the admissible range. Note that if allowance is about to
// overflow, that is, allowance > 2^64/10, the condition is automatically
// true due to the limited range of fraction.
return adjustLastDigit(d,
fraction, targetDiff*multiplier, allowance*multiplier,
1<<shift, multiplier*2)
}
}
return false
}
// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
// It assumes that a decimal digit is worth ulpDecimal*ε, and that
// all data is known with a error estimate of ulpBinary*ε.
func adjustLastDigit(d *decimal, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
if ulpDecimal < 2*ulpBinary {
// Appromixation is too wide.
return false
}
for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
d.d[d.nd-1]--
currentDiff += ulpDecimal
}
if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
// we have two choices, and don't know what to do.
return false
}
if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
// we went too far
return false
}
if d.nd == 1 && d.d[0] == '0' {
// the number has actually reached zero.
d.nd = 0
d.dp = 0
}
return true
}

View File

@ -98,29 +98,43 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
return fmtB(dst, neg, mant, exp, flt)
}
// Create exact decimal representation.
// The shift is exp - flt.mantbits because mant is a 1-bit integer
// followed by a flt.mantbits fraction, and we are treating it as
// a 1+flt.mantbits-bit integer.
d := new(decimal)
d.Assign(mant)
d.Shift(exp - int(flt.mantbits))
// Round appropriately.
// Negative precision means "only as much as needed to be exact."
shortest := false
if prec < 0 {
shortest = true
roundShortest(d, mant, exp, flt)
switch fmt {
case 'e', 'E':
prec = d.nd - 1
case 'f':
prec = max(d.nd-d.dp, 0)
case 'g', 'G':
prec = d.nd
shortest := prec < 0
d := new(decimal)
if shortest {
ok := false
if optimize && bitSize == 64 {
// Try Grisu3 algorithm.
f := new(extFloat)
lower, upper := f.AssignComputeBounds(val)
ok = f.ShortestDecimal(d, &lower, &upper)
}
if !ok {
// Create exact decimal representation.
// The shift is exp - flt.mantbits because mant is a 1-bit integer
// followed by a flt.mantbits fraction, and we are treating it as
// a 1+flt.mantbits-bit integer.
d.Assign(mant)
d.Shift(exp - int(flt.mantbits))
roundShortest(d, mant, exp, flt)
}
// Precision for shortest representation mode.
if prec < 0 {
switch fmt {
case 'e', 'E':
prec = d.nd - 1
case 'f':
prec = max(d.nd-d.dp, 0)
case 'g', 'G':
prec = d.nd
}
}
} else {
// Create exact decimal representation.
d.Assign(mant)
d.Shift(exp - int(flt.mantbits))
// Round appropriately.
switch fmt {
case 'e', 'E':
d.Round(prec + 1)

View File

@ -6,6 +6,7 @@ package strconv_test
import (
"math"
"math/rand"
. "strconv"
"testing"
)
@ -153,6 +154,25 @@ func TestFtoa(t *testing.T) {
}
}
func TestFtoaRandom(t *testing.T) {
N := int(1e4)
if testing.Short() {
N = 100
}
t.Logf("testing %d random numbers with fast and slow FormatFloat", N)
for i := 0; i < N; i++ {
bits := uint64(rand.Uint32())<<32 | uint64(rand.Uint32())
x := math.Float64frombits(bits)
shortFast := FormatFloat(x, 'g', -1, 64)
SetOptimize(false)
shortSlow := FormatFloat(x, 'g', -1, 64)
SetOptimize(true)
if shortSlow != shortFast {
t.Errorf("%b printed as %s, want %s", x, shortFast, shortSlow)
}
}
}
func TestAppendFloatDoesntAllocate(t *testing.T) {
n := numAllocations(func() {
var buf [64]byte
@ -188,6 +208,12 @@ func BenchmarkFormatFloatExp(b *testing.B) {
}
}
func BenchmarkFormatFloatNegExp(b *testing.B) {
for i := 0; i < b.N; i++ {
FormatFloat(-5.11e-95, 'g', -1, 64)
}
}
func BenchmarkFormatFloatBig(b *testing.B) {
for i := 0; i < b.N; i++ {
FormatFloat(123456789123456789123456789, 'g', -1, 64)
@ -215,6 +241,13 @@ func BenchmarkAppendFloatExp(b *testing.B) {
}
}
func BenchmarkAppendFloatNegExp(b *testing.B) {
dst := make([]byte, 0, 30)
for i := 0; i < b.N; i++ {
AppendFloat(dst, -5.11e-95, 'g', -1, 64)
}
}
func BenchmarkAppendFloatBig(b *testing.B) {
dst := make([]byte, 0, 30)
for i := 0; i < b.N; i++ {