mirror of
https://github.com/golang/go
synced 2024-11-24 23:07:56 -07:00
strconv: faster FormatFloat(x, *, -1, 64) using Grisu3 algorithm.
The implementation is similar to the one from the double-conversion library used in the Chrome V8 engine. old ns/op new ns/op speedup BenchmarkAppendFloatDecimal 591 480 1.2x BenchmarkAppendFloat 2956 486 6.1x BenchmarkAppendFloatExp 10622 503 21.1x BenchmarkAppendFloatNegExp 40343 483 83.5x BenchmarkAppendFloatBig 2798 664 4.2x See F. Loitsch, ``Printing Floating-Point Numbers Quickly and Accurately with Integers'', Proceedings of the ACM, 2010. R=rsc CC=golang-dev, remy https://golang.org/cl/5502079
This commit is contained in:
parent
a5950df89e
commit
0575cd9de4
@ -191,6 +191,36 @@ func (f *extFloat) Assign(x float64) {
|
||||
f.exp -= 64
|
||||
}
|
||||
|
||||
// AssignComputeBounds sets f to the value of x and returns
|
||||
// lower, upper such that any number in the closed interval
|
||||
// [lower, upper] is converted back to x.
|
||||
func (f *extFloat) AssignComputeBounds(x float64) (lower, upper extFloat) {
|
||||
// Special cases.
|
||||
bits := math.Float64bits(x)
|
||||
flt := &float64info
|
||||
neg := bits>>(flt.expbits+flt.mantbits) != 0
|
||||
expBiased := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
|
||||
mant := bits & (uint64(1)<<flt.mantbits - 1)
|
||||
|
||||
if expBiased == 0 {
|
||||
// denormalized.
|
||||
f.mant = mant
|
||||
f.exp = 1 + flt.bias - int(flt.mantbits)
|
||||
} else {
|
||||
f.mant = mant | 1<<flt.mantbits
|
||||
f.exp = expBiased + flt.bias - int(flt.mantbits)
|
||||
}
|
||||
f.neg = neg
|
||||
|
||||
upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
|
||||
if mant != 0 || expBiased == 1 {
|
||||
lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
|
||||
} else {
|
||||
lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Normalize normalizes f so that the highest bit of the mantissa is
|
||||
// set, and returns the number by which the mantissa was left-shifted.
|
||||
func (f *extFloat) Normalize() uint {
|
||||
@ -309,3 +339,163 @@ func (f *extFloat) AssignDecimal(d *decimal) (ok bool) {
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
|
||||
// f by an approximate power of ten 10^-exp, and returns exp10, so
|
||||
// that f*10^exp10 has the same value as the old f, up to an ulp,
|
||||
// as well as the index of 10^-exp in the powersOfTen table.
|
||||
// The arguments expMin and expMax constrain the final value of the
|
||||
// binary exponent of f.
|
||||
func (f *extFloat) frexp10(expMin, expMax int) (exp10, index int) {
|
||||
// it is illegal to call this function with a too restrictive exponent range.
|
||||
if expMax-expMin <= 25 {
|
||||
panic("strconv: invalid exponent range")
|
||||
}
|
||||
// Find power of ten such that x * 10^n has a binary exponent
|
||||
// between expMin and expMax
|
||||
approxExp10 := -(f.exp + 100) * 28 / 93 // log(10)/log(2) is close to 93/28.
|
||||
i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
|
||||
Loop:
|
||||
for {
|
||||
exp := f.exp + powersOfTen[i].exp + 64
|
||||
switch {
|
||||
case exp < expMin:
|
||||
i++
|
||||
case exp > expMax:
|
||||
i--
|
||||
default:
|
||||
break Loop
|
||||
}
|
||||
}
|
||||
// Apply the desired decimal shift on f. It will have exponent
|
||||
// in the desired range. This is multiplication by 10^-exp10.
|
||||
f.Multiply(powersOfTen[i])
|
||||
|
||||
return -(firstPowerOfTen + i*stepPowerOfTen), i
|
||||
}
|
||||
|
||||
// frexp10Many applies a common shift by a power of ten to a, b, c.
|
||||
func frexp10Many(expMin, expMax int, a, b, c *extFloat) (exp10 int) {
|
||||
exp10, i := c.frexp10(expMin, expMax)
|
||||
a.Multiply(powersOfTen[i])
|
||||
b.Multiply(powersOfTen[i])
|
||||
return
|
||||
}
|
||||
|
||||
// ShortestDecimal stores in d the shortest decimal representation of f
|
||||
// which belongs to the open interval (lower, upper), where f is supposed
|
||||
// to lie. It returns false whenever the result is unsure. The implementation
|
||||
// uses the Grisu3 algorithm.
|
||||
func (f *extFloat) ShortestDecimal(d *decimal, lower, upper *extFloat) bool {
|
||||
if f.mant == 0 {
|
||||
d.d[0] = '0'
|
||||
d.nd = 1
|
||||
d.dp = 0
|
||||
d.neg = f.neg
|
||||
}
|
||||
const minExp = -60
|
||||
const maxExp = -32
|
||||
upper.Normalize()
|
||||
// Uniformize exponents.
|
||||
if f.exp > upper.exp {
|
||||
f.mant <<= uint(f.exp - upper.exp)
|
||||
f.exp = upper.exp
|
||||
}
|
||||
if lower.exp > upper.exp {
|
||||
lower.mant <<= uint(lower.exp - upper.exp)
|
||||
lower.exp = upper.exp
|
||||
}
|
||||
|
||||
exp10 := frexp10Many(minExp, maxExp, lower, f, upper)
|
||||
// Take a safety margin due to rounding in frexp10Many, but we lose precision.
|
||||
upper.mant++
|
||||
lower.mant--
|
||||
|
||||
// The shortest representation of f is either rounded up or down, but
|
||||
// in any case, it is a truncation of upper.
|
||||
shift := uint(-upper.exp)
|
||||
integer := uint32(upper.mant >> shift)
|
||||
fraction := upper.mant - (uint64(integer) << shift)
|
||||
|
||||
// How far we can go down from upper until the result is wrong.
|
||||
allowance := upper.mant - lower.mant
|
||||
// How far we should go to get a very precise result.
|
||||
targetDiff := upper.mant - f.mant
|
||||
|
||||
// Count integral digits: there are at most 10.
|
||||
var integerDigits int
|
||||
for i, pow := range uint64pow10 {
|
||||
if uint64(integer) >= pow {
|
||||
integerDigits = i + 1
|
||||
}
|
||||
}
|
||||
for i := 0; i < integerDigits; i++ {
|
||||
pow := uint64pow10[integerDigits-i-1]
|
||||
digit := integer / uint32(pow)
|
||||
d.d[i] = byte(digit + '0')
|
||||
integer -= digit * uint32(pow)
|
||||
// evaluate whether we should stop.
|
||||
if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
|
||||
d.nd = i + 1
|
||||
d.dp = integerDigits + exp10
|
||||
d.neg = f.neg
|
||||
// Sometimes allowance is so large the last digit might need to be
|
||||
// decremented to get closer to f.
|
||||
return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
|
||||
}
|
||||
}
|
||||
d.nd = integerDigits
|
||||
d.dp = d.nd + exp10
|
||||
d.neg = f.neg
|
||||
|
||||
// Compute digits of the fractional part. At each step fraction does not
|
||||
// overflow. The choice of minExp implies that fraction is less than 2^60.
|
||||
var digit int
|
||||
multiplier := uint64(1)
|
||||
for {
|
||||
fraction *= 10
|
||||
multiplier *= 10
|
||||
digit = int(fraction >> shift)
|
||||
d.d[d.nd] = byte(digit + '0')
|
||||
d.nd++
|
||||
fraction -= uint64(digit) << shift
|
||||
if fraction < allowance*multiplier {
|
||||
// We are in the admissible range. Note that if allowance is about to
|
||||
// overflow, that is, allowance > 2^64/10, the condition is automatically
|
||||
// true due to the limited range of fraction.
|
||||
return adjustLastDigit(d,
|
||||
fraction, targetDiff*multiplier, allowance*multiplier,
|
||||
1<<shift, multiplier*2)
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
|
||||
// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
|
||||
// It assumes that a decimal digit is worth ulpDecimal*ε, and that
|
||||
// all data is known with a error estimate of ulpBinary*ε.
|
||||
func adjustLastDigit(d *decimal, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
|
||||
if ulpDecimal < 2*ulpBinary {
|
||||
// Appromixation is too wide.
|
||||
return false
|
||||
}
|
||||
for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
|
||||
d.d[d.nd-1]--
|
||||
currentDiff += ulpDecimal
|
||||
}
|
||||
if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
|
||||
// we have two choices, and don't know what to do.
|
||||
return false
|
||||
}
|
||||
if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
|
||||
// we went too far
|
||||
return false
|
||||
}
|
||||
if d.nd == 1 && d.d[0] == '0' {
|
||||
// the number has actually reached zero.
|
||||
d.nd = 0
|
||||
d.dp = 0
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
@ -98,20 +98,29 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
|
||||
return fmtB(dst, neg, mant, exp, flt)
|
||||
}
|
||||
|
||||
// Negative precision means "only as much as needed to be exact."
|
||||
shortest := prec < 0
|
||||
|
||||
d := new(decimal)
|
||||
if shortest {
|
||||
ok := false
|
||||
if optimize && bitSize == 64 {
|
||||
// Try Grisu3 algorithm.
|
||||
f := new(extFloat)
|
||||
lower, upper := f.AssignComputeBounds(val)
|
||||
ok = f.ShortestDecimal(d, &lower, &upper)
|
||||
}
|
||||
if !ok {
|
||||
// Create exact decimal representation.
|
||||
// The shift is exp - flt.mantbits because mant is a 1-bit integer
|
||||
// followed by a flt.mantbits fraction, and we are treating it as
|
||||
// a 1+flt.mantbits-bit integer.
|
||||
d := new(decimal)
|
||||
d.Assign(mant)
|
||||
d.Shift(exp - int(flt.mantbits))
|
||||
|
||||
// Round appropriately.
|
||||
// Negative precision means "only as much as needed to be exact."
|
||||
shortest := false
|
||||
if prec < 0 {
|
||||
shortest = true
|
||||
roundShortest(d, mant, exp, flt)
|
||||
}
|
||||
// Precision for shortest representation mode.
|
||||
if prec < 0 {
|
||||
switch fmt {
|
||||
case 'e', 'E':
|
||||
prec = d.nd - 1
|
||||
@ -120,7 +129,12 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
|
||||
case 'g', 'G':
|
||||
prec = d.nd
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Create exact decimal representation.
|
||||
d.Assign(mant)
|
||||
d.Shift(exp - int(flt.mantbits))
|
||||
// Round appropriately.
|
||||
switch fmt {
|
||||
case 'e', 'E':
|
||||
d.Round(prec + 1)
|
||||
|
@ -6,6 +6,7 @@ package strconv_test
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/rand"
|
||||
. "strconv"
|
||||
"testing"
|
||||
)
|
||||
@ -153,6 +154,25 @@ func TestFtoa(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestFtoaRandom(t *testing.T) {
|
||||
N := int(1e4)
|
||||
if testing.Short() {
|
||||
N = 100
|
||||
}
|
||||
t.Logf("testing %d random numbers with fast and slow FormatFloat", N)
|
||||
for i := 0; i < N; i++ {
|
||||
bits := uint64(rand.Uint32())<<32 | uint64(rand.Uint32())
|
||||
x := math.Float64frombits(bits)
|
||||
shortFast := FormatFloat(x, 'g', -1, 64)
|
||||
SetOptimize(false)
|
||||
shortSlow := FormatFloat(x, 'g', -1, 64)
|
||||
SetOptimize(true)
|
||||
if shortSlow != shortFast {
|
||||
t.Errorf("%b printed as %s, want %s", x, shortFast, shortSlow)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestAppendFloatDoesntAllocate(t *testing.T) {
|
||||
n := numAllocations(func() {
|
||||
var buf [64]byte
|
||||
@ -188,6 +208,12 @@ func BenchmarkFormatFloatExp(b *testing.B) {
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkFormatFloatNegExp(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
FormatFloat(-5.11e-95, 'g', -1, 64)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkFormatFloatBig(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
FormatFloat(123456789123456789123456789, 'g', -1, 64)
|
||||
@ -215,6 +241,13 @@ func BenchmarkAppendFloatExp(b *testing.B) {
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkAppendFloatNegExp(b *testing.B) {
|
||||
dst := make([]byte, 0, 30)
|
||||
for i := 0; i < b.N; i++ {
|
||||
AppendFloat(dst, -5.11e-95, 'g', -1, 64)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkAppendFloatBig(b *testing.B) {
|
||||
dst := make([]byte, 0, 30)
|
||||
for i := 0; i < b.N; i++ {
|
||||
|
Loading…
Reference in New Issue
Block a user