1
0
mirror of https://github.com/golang/go synced 2024-10-04 10:21:21 -06:00
go/src/pkg/runtime/chan.h

80 lines
1.8 KiB
C
Raw Normal View History

runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#define MAXALIGN 8
typedef struct WaitQ WaitQ;
typedef struct SudoG SudoG;
typedef struct Select Select;
typedef struct Scase Scase;
// Known to compiler.
// Changes here must also be made in src/cmd/gc/select.c's selecttype.
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
struct SudoG
{
G* g;
uint32* selectdone;
SudoG* link;
byte* elem; // data element
int64 releasetime;
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
};
struct WaitQ
{
SudoG* first;
SudoG* last;
};
struct Hchan
{
uintgo qcount; // total data in the q
uintgo dataqsiz; // size of the circular q
byte* buf;
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
uint16 elemsize;
bool closed;
Type* elemtype; // element type
uintgo sendx; // send index
uintgo recvx; // receive index
WaitQ recvq; // list of recv waiters
WaitQ sendq; // list of send waiters
Lock lock;
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
};
// Buffer follows Hchan immediately in memory.
// chanbuf(c, i) is pointer to the i'th slot in the buffer.
#define chanbuf(c, i) ((byte*)((c)->buf)+(uintptr)(c)->elemsize*(i))
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
enum
{
debug = 0,
// Scase.kind
CaseRecv,
CaseSend,
CaseDefault,
};
// Known to compiler.
// Changes here must also be made in src/cmd/gc/select.c's selecttype.
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
struct Scase
{
SudoG sg; // must be first member (cast to Scase)
Hchan* chan; // chan
byte* pc; // return pc
uint16 kind;
uint16 so; // vararg of selected bool
bool* receivedp; // pointer to received bool (recv2)
};
// Known to compiler.
// Changes here must also be made in src/cmd/gc/select.c's selecttype.
runtime: use goc2c as much as possible Package runtime's C functions written to be called from Go started out written in C using carefully constructed argument lists and the FLUSH macro to write a result back to memory. For some functions, the appropriate parameter list ended up being architecture-dependent due to differences in alignment, so we added 'goc2c', which takes a .goc file containing Go func declarations but C bodies, rewrites the Go func declaration to equivalent C declarations for the target architecture, adds the needed FLUSH statements, and writes out an equivalent C file. That C file is compiled as part of package runtime. Native Client's x86-64 support introduces the most complex alignment rules yet, breaking many functions that could until now be portably written in C. Using goc2c for those avoids the breakage. Separately, Keith's work on emitting stack information from the C compiler would require the hand-written functions to add #pragmas specifying how many arguments are result parameters. Using goc2c for those avoids maintaining #pragmas. For both reasons, use goc2c for as many Go-called C functions as possible. This CL is a replay of the bulk of CL 15400047 and CL 15790043, both of which were reviewed as part of the NaCl port and are checked in to the NaCl branch. This CL is part of bringing the NaCl code into the main tree. No new code here, just reformatting and occasional movement into .h files. LGTM=r R=dave, alex.brainman, r CC=golang-codereviews https://golang.org/cl/65220044
2014-02-20 13:58:47 -07:00
struct Select
{
uint16 tcase; // total count of scase[]
uint16 ncase; // currently filled scase[]
uint16* pollorder; // case poll order
Hchan** lockorder; // channel lock order
Scase scase[1]; // one per case (in order of appearance)
};