1
0
mirror of https://github.com/golang/go synced 2024-11-18 16:44:43 -07:00
go/internal/lsp/source/format.go

282 lines
8.6 KiB
Go
Raw Normal View History

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package source provides core features for use by Go editors and tools.
package source
import (
"bytes"
"context"
"fmt"
"go/ast"
"go/format"
"go/parser"
"go/token"
"strings"
"golang.org/x/tools/internal/event"
"golang.org/x/tools/internal/imports"
"golang.org/x/tools/internal/lsp/diff"
"golang.org/x/tools/internal/lsp/protocol"
)
// Format formats a file with a given range.
func Format(ctx context.Context, snapshot Snapshot, fh FileHandle) ([]protocol.TextEdit, error) {
ctx, done := event.Start(ctx, "source.Format")
defer done()
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
pgf, err := snapshot.ParseGo(ctx, fh, ParseFull)
if err != nil {
return nil, err
}
// Even if this file has parse errors, it might still be possible to format it.
// Using format.Node on an AST with errors may result in code being modified.
// Attempt to format the source of this file instead.
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
if pgf.ParseErr != nil {
formatted, err := formatSource(ctx, fh)
if err != nil {
return nil, err
}
return computeTextEdits(ctx, snapshot, pgf, string(formatted))
}
fset := snapshot.FileSet()
// format.Node changes slightly from one release to another, so the version
// of Go used to build the LSP server will determine how it formats code.
// This should be acceptable for all users, who likely be prompted to rebuild
// the LSP server on each Go release.
buf := &bytes.Buffer{}
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
if err := format.Node(buf, fset, pgf.File); err != nil {
return nil, err
}
formatted := buf.String()
// Apply additional formatting, if any is supported. Currently, the only
// supported additional formatter is gofumpt.
if format := snapshot.View().Options().Hooks.GofumptFormat; snapshot.View().Options().Gofumpt && format != nil {
b, err := format(ctx, buf.Bytes())
if err != nil {
return nil, err
}
formatted = string(b)
}
return computeTextEdits(ctx, snapshot, pgf, formatted)
}
func formatSource(ctx context.Context, fh FileHandle) ([]byte, error) {
_, done := event.Start(ctx, "source.formatSource")
defer done()
data, err := fh.Read()
if err != nil {
return nil, err
}
return format.Source(data)
}
type ImportFix struct {
Fix *imports.ImportFix
Edits []protocol.TextEdit
}
// AllImportsFixes formats f for each possible fix to the imports.
// In addition to returning the result of applying all edits,
// it returns a list of fixes that could be applied to the file, with the
// corresponding TextEdits that would be needed to apply that fix.
func AllImportsFixes(ctx context.Context, snapshot Snapshot, fh FileHandle) (allFixEdits []protocol.TextEdit, editsPerFix []*ImportFix, err error) {
ctx, done := event.Start(ctx, "source.AllImportsFixes")
defer done()
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
pgf, err := snapshot.ParseGo(ctx, fh, ParseFull)
if err != nil {
return nil, nil, err
}
if err := snapshot.View().RunProcessEnvFunc(ctx, func(opts *imports.Options) error {
allFixEdits, editsPerFix, err = computeImportEdits(ctx, snapshot, pgf, opts)
return err
}); err != nil {
return nil, nil, fmt.Errorf("AllImportsFixes: %v", err)
}
return allFixEdits, editsPerFix, nil
}
// computeImportEdits computes a set of edits that perform one or all of the
// necessary import fixes.
func computeImportEdits(ctx context.Context, snapshot Snapshot, pgf *ParsedGoFile, options *imports.Options) (allFixEdits []protocol.TextEdit, editsPerFix []*ImportFix, err error) {
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
filename := pgf.URI.Filename()
// Build up basic information about the original file.
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
allFixes, err := imports.FixImports(filename, pgf.Src, options)
if err != nil {
return nil, nil, err
}
allFixEdits, err = computeFixEdits(snapshot, pgf, options, allFixes)
if err != nil {
return nil, nil, err
}
// Apply all of the import fixes to the file.
// Add the edits for each fix to the result.
for _, fix := range allFixes {
edits, err := computeFixEdits(snapshot, pgf, options, []*imports.ImportFix{fix})
if err != nil {
return nil, nil, err
}
editsPerFix = append(editsPerFix, &ImportFix{
Fix: fix,
Edits: edits,
})
}
return allFixEdits, editsPerFix, nil
}
func computeOneImportFixEdits(ctx context.Context, snapshot Snapshot, pgf *ParsedGoFile, fix *imports.ImportFix) ([]protocol.TextEdit, error) {
options := &imports.Options{
LocalPrefix: snapshot.View().Options().LocalPrefix,
// Defaults.
AllErrors: true,
Comments: true,
Fragment: true,
FormatOnly: false,
TabIndent: true,
TabWidth: 8,
}
return computeFixEdits(snapshot, pgf, options, []*imports.ImportFix{fix})
}
func computeFixEdits(snapshot Snapshot, pgf *ParsedGoFile, options *imports.Options, fixes []*imports.ImportFix) ([]protocol.TextEdit, error) {
// trim the original data to match fixedData
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
left := importPrefix(pgf.Src)
extra := !strings.Contains(left, "\n") // one line may have more than imports
if extra {
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
left = string(pgf.Src)
}
if len(left) > 0 && left[len(left)-1] != '\n' {
left += "\n"
}
// Apply the fixes and re-parse the file so that we can locate the
// new imports.
flags := parser.ImportsOnly
if extra {
// used all of origData above, use all of it here too
flags = 0
}
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
fixedData, err := imports.ApplyFixes(fixes, "", pgf.Src, options, flags)
if err != nil {
return nil, err
}
if fixedData == nil || fixedData[len(fixedData)-1] != '\n' {
fixedData = append(fixedData, '\n') // ApplyFixes may miss the newline, go figure.
}
edits := snapshot.View().Options().ComputeEdits(pgf.URI, left, string(fixedData))
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
return ToProtocolEdits(pgf.Mapper, edits)
}
// importPrefix returns the prefix of the given file content through the final
// import statement. If there are no imports, the prefix is the package
// statement and any comment groups below it.
func importPrefix(src []byte) string {
fset := token.NewFileSet()
// do as little parsing as possible
f, err := parser.ParseFile(fset, "", src, parser.ImportsOnly|parser.ParseComments)
if err != nil { // This can happen if 'package' is misspelled
return ""
}
tok := fset.File(f.Pos())
var importEnd int
for _, d := range f.Decls {
if x, ok := d.(*ast.GenDecl); ok && x.Tok == token.IMPORT {
if e := tok.Offset(d.End()); e > importEnd {
importEnd = e
}
}
}
maybeAdjustToLineEnd := func(pos token.Pos, isCommentNode bool) int {
offset := tok.Offset(pos)
// Don't go past the end of the file.
if offset > len(src) {
offset = len(src)
}
// The go/ast package does not account for different line endings, and
// specifically, in the text of a comment, it will strip out \r\n line
// endings in favor of \n. To account for these differences, we try to
// return a position on the next line whenever possible.
switch line := tok.Line(tok.Pos(offset)); {
case line < tok.LineCount():
nextLineOffset := tok.Offset(tok.LineStart(line + 1))
// If we found a position that is at the end of a line, move the
// offset to the start of the next line.
if offset+1 == nextLineOffset {
offset = nextLineOffset
}
case isCommentNode, offset+1 == tok.Size():
// If the last line of the file is a comment, or we are at the end
// of the file, the prefix is the entire file.
offset = len(src)
}
return offset
}
if importEnd == 0 {
pkgEnd := f.Name.End()
importEnd = maybeAdjustToLineEnd(pkgEnd, false)
}
for _, c := range f.Comments {
if end := tok.Offset(c.End()); end > importEnd {
importEnd = maybeAdjustToLineEnd(c.End(), true)
}
}
if importEnd > len(src) {
importEnd = len(src)
}
return string(src[:importEnd])
}
func computeTextEdits(ctx context.Context, snapshot Snapshot, pgf *ParsedGoFile, formatted string) ([]protocol.TextEdit, error) {
_, done := event.Start(ctx, "source.computeTextEdits")
defer done()
edits := snapshot.View().Options().ComputeEdits(pgf.URI, string(pgf.Src), formatted)
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
return ToProtocolEdits(pgf.Mapper, edits)
}
func ToProtocolEdits(m *protocol.ColumnMapper, edits []diff.TextEdit) ([]protocol.TextEdit, error) {
if edits == nil {
return nil, nil
}
result := make([]protocol.TextEdit, len(edits))
for i, edit := range edits {
rng, err := m.Range(edit.Span)
if err != nil {
return nil, err
}
result[i] = protocol.TextEdit{
Range: rng,
NewText: edit.NewText,
}
}
return result, nil
}
func FromProtocolEdits(m *protocol.ColumnMapper, edits []protocol.TextEdit) ([]diff.TextEdit, error) {
if edits == nil {
return nil, nil
}
result := make([]diff.TextEdit, len(edits))
for i, edit := range edits {
spn, err := m.RangeSpan(edit.Range)
if err != nil {
return nil, err
}
result[i] = diff.TextEdit{
Span: spn,
NewText: edit.NewText,
}
}
return result, nil
}