1
0
mirror of https://github.com/golang/go synced 2024-10-05 09:21:22 -06:00
go/usr/gri/pretty/format.go

622 lines
12 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package format
import (
"fmt";
"go/scanner";
"go/token";
"io";
"reflect";
"os";
)
// -----------------------------------------------------------------------------
// Format
// A production expression is built from the following nodes.
//
type (
expr interface {
implements_expr();
};
empty struct {
};
alternative struct {
x, y expr;
};
sequence struct {
x, y expr;
};
field struct {
name string; // including "^", "*"
format expr; // nil if no format specified
};
literal struct {
// TODO should there be other types or should it all be string literals?
value []byte;
};
option struct {
x expr
};
repetition struct {
x expr
};
// TODO custom formats are not yet used
custom struct {
name string;
f func(w io.Write, value interface{}, name string) bool
};
)
// These methods are used to enforce the "implements" relationship for
// better compile-time type checking.
//
// TODO If we had a basic accessor mechanism in the language (a field
// "f T" automatically implements a corresponding accessor "f() T", this
// could be expressed more easily by simply providing the field.
//
func (x *empty) implements_expr() {}
func (x *alternative) implements_expr() {}
func (x *sequence) implements_expr() {}
func (x *field) implements_expr() {}
func (x *literal) implements_expr() {}
func (x *option) implements_expr() {}
func (x *repetition) implements_expr() {}
func (x *custom) implements_expr() {}
// A Format is a set of production expressions.
type Format map [string] expr;
// -----------------------------------------------------------------------------
// Parsing
/* TODO
- EBNF vs Kleene notation
- default formatters for basic types (may imply scopes so we can override)
- installable custom formatters (like for template.go)
- format strings
*/
/* Format = { Production } .
Production = Name [ "=" [ Expression ] ] ";" .
Name = identifier { "." identifier } .
Expression = Term { "|" Term } .
Term = Factor { Factor } .
Factor = string_literal | Field | Group | Option | Repetition .
Field = ( "^" | "*" | Name ) [ ":" Expression ] .
Group = "(" Expression ")" .
Option = "[" Expression "]" .
Repetition = "{" Expression "}" .
*/
type parser struct {
scanner scanner.Scanner;
// error handling
lastline int; // > 0 if there was any error
// next token
pos token.Position; // token position
tok token.Token; // one token look-ahead
lit []byte; // token literal
}
// The parser implements the scanner.ErrorHandler interface.
func (p *parser) Error(pos token.Position, msg string) {
if pos.Line != p.lastline {
// only report error if not on the same line as previous error
// in the hope to reduce number of follow-up errors reported
fmt.Fprintf(os.Stderr, "%d:%d: %s\n", pos.Line, pos.Column, msg);
}
p.lastline = pos.Line;
}
func (p *parser) next() {
p.pos, p.tok, p.lit = p.scanner.Scan();
}
func (p *parser) error_expected(pos token.Position, msg string) {
msg = "expected " + msg;
if pos.Offset == p.pos.Offset {
// the error happened at the current position;
// make the error message more specific
msg += ", found '" + p.tok.String() + "'";
if p.tok.IsLiteral() {
msg += " " + string(p.lit);
}
}
p.Error(pos, msg);
}
func (p *parser) expect(tok token.Token) token.Position {
pos := p.pos;
if p.tok != tok {
p.error_expected(pos, "'" + tok.String() + "'");
}
p.next(); // make progress in any case
return pos;
}
func (p *parser) parseIdentifier() string {
name := string(p.lit);
p.expect(token.IDENT);
return name;
}
func (p *parser) parseName() string {
name := p.parseIdentifier();
for p.tok == token.PERIOD {
p.next();
name = name + "." + p.parseIdentifier();
}
return name;
}
// TODO WriteByte should be a ByteBuffer method
func writeByte(buf *io.ByteBuffer, b byte) {
buf.Write([]byte{b});
}
// TODO make this complete
func escapeString(s []byte) []byte {
// the string syntax is correct since it comes from the scannner
var buf io.ByteBuffer;
i0 := 0;
for i := 0; i < len(s); {
if s[i] == '\\' {
buf.Write(s[i0 : i]);
i++;
var esc byte;
switch s[i] {
case 'n': esc = '\n';
case 't': esc = '\t';
default: panic("unhandled escape:", string(s[i]));
}
writeByte(&buf, esc);
i++;
i0 = i;
} else {
i++;
}
}
if i0 == 0 {
// no escape sequences
return s;
}
buf.Write(s[i0 : len(s)]);
return buf.Data();
}
func (p *parser) parseValue() []byte {
if p.tok != token.STRING {
p.expect(token.STRING);
return nil;
}
s := p.lit[1 : len(p.lit)-1]; // strip quotes
if p.lit[0] == '"' {
s = escapeString(s);
}
p.next();
return s;
}
func (p *parser) parseExpr() expr
func (p *parser) parseField() expr {
var name string;
switch p.tok {
case token.XOR:
name = "^";
p.next();
case token.MUL:
name = "*";
p.next();
case token.IDENT:
name = p.parseName();
default:
panic("unreachable");
}
var format expr;
if p.tok == token.COLON {
p.next();
format = p.parseExpr();
}
return &field{name, format};
}
func (p *parser) parseFactor() (x expr) {
switch p.tok {
case token.XOR, token.MUL, token.IDENT:
x = p.parseField();
case token.STRING:
x = &literal{p.parseValue()};
case token.LPAREN:
p.next();
x = p.parseExpr();
p.expect(token.RPAREN);
case token.LBRACK:
p.next();
x = &option{p.parseExpr()};
p.expect(token.RBRACK);
case token.LBRACE:
p.next();
x = &repetition{p.parseExpr()};
p.expect(token.RBRACE);
default:
p.error_expected(p.pos, "factor");
p.next(); // make progress
}
return x;
}
func (p *parser) parseTerm() expr {
x := p.parseFactor();
for p.tok == token.XOR ||
p.tok == token.MUL ||
p.tok == token.IDENT ||
p.tok == token.STRING ||
p.tok == token.LPAREN ||
p.tok == token.LBRACK ||
p.tok == token.LBRACE
{
y := p.parseFactor();
x = &sequence{x, y};
}
return x;
}
func (p *parser) parseExpr() expr {
x := p.parseTerm();
for p.tok == token.OR {
p.next();
y := p.parseTerm();
x = &alternative{x, y};
}
return x;
}
func (p *parser) parseProduction() (string, expr) {
name := p.parseName();
var x expr;
if p.tok == token.ASSIGN {
p.next();
if p.tok == token.SEMICOLON {
x = &empty{};
} else {
x = p.parseExpr();
}
}
p.expect(token.SEMICOLON);
return name, x;
}
func (p *parser) parseFormat() Format {
format := make(Format);
prefix := "";
for p.tok != token.EOF {
pos := p.pos;
name, x := p.parseProduction();
if x == nil {
// prefix declaration
prefix = name + ".";
} else {
// production declaration
// add package prefix, if any
if prefix != "" {
name = prefix + name;
}
// add production to format
if t, found := format[name]; !found {
format[name] = x;
} else {
p.Error(pos, "production already declared: " + name);
}
}
}
p.expect(token.EOF);
return format;
}
func readSource(src interface{}, err scanner.ErrorHandler) []byte {
errmsg := "invalid input type (or nil)";
switch s := src.(type) {
case string:
return io.StringBytes(s);
case []byte:
return s;
case *io.ByteBuffer:
// is io.Read, but src is already available in []byte form
if s != nil {
return s.Data();
}
case io.Read:
var buf io.ByteBuffer;
n, os_err := io.Copy(s, &buf);
if os_err == nil {
return buf.Data();
}
errmsg = os_err.String();
}
if err != nil {
// TODO fix this
panic();
//err.Error(noPos, errmsg);
}
return nil;
}
func Parse(src interface{}) Format {
// initialize parser
var p parser;
p.scanner.Init(readSource(src, &p), &p, false);
p.next();
f := p.parseFormat();
if p.lastline > 0 {
return nil; // src contains errors
}
return f;
}
// -----------------------------------------------------------------------------
// Application
func fieldIndex(v reflect.StructValue, fieldname string) int {
t := v.Type().(reflect.StructType);
for i := 0; i < v.Len(); i++ {
name, typ, tag, offset := t.Field(i);
if name == fieldname {
return i;
}
}
return -1;
}
func getField(v reflect.StructValue, fieldname string) reflect.Value {
i := fieldIndex(v, fieldname);
if i < 0 {
panicln("field not found:", fieldname);
}
return v.Field(i);
}
func typename(value reflect.Value) string {
name := value.Type().Name();
if name != "" {
return name;
}
switch value.Kind() {
case reflect.ArrayKind: name = "array";
case reflect.BoolKind: name = "bool";
case reflect.ChanKind: name = "chan";
case reflect.DotDotDotKind: name = "...";
case reflect.FloatKind: name = "float";
case reflect.Float32Kind: name = "float32";
case reflect.Float64Kind: name = "float64";
case reflect.FuncKind: name = "func";
case reflect.IntKind: name = "int";
case reflect.Int16Kind: name = "int16";
case reflect.Int32Kind: name = "int32";
case reflect.Int64Kind: name = "int64";
case reflect.Int8Kind: name = "int8";
case reflect.InterfaceKind: name = "interface";
case reflect.MapKind: name = "map";
case reflect.PtrKind: name = "pointer";
case reflect.StringKind: name = "string";
case reflect.StructKind: name = "struct";
case reflect.UintKind: name = "uint";
case reflect.Uint16Kind: name = "uint16";
case reflect.Uint32Kind: name = "uint32";
case reflect.Uint64Kind: name = "uint64";
case reflect.Uint8Kind: name = "uint8";
case reflect.UintptrKind: name = "uintptr";
}
return name;
}
var defaultFormat = &literal{io.StringBytes("%v")};
func (f Format) getFormat(value reflect.Value) expr {
if format, found := f[typename(value)]; found {
return format;
}
// no format found
return defaultFormat;
}
// Count the number of printf-style '%' formatters in s.
// The result is 0, 1, or 2 (where 2 stands for 2 or more).
//
func percentCount(s []byte) int {
n := 0;
for i := 0; n < 2 && i < len(s); i++ {
// TODO should not count "%%"'s
if s[i] == '%' {
n++;
}
}
return n;
}
func printf(w io.Write, format []byte, value reflect.Value) {
// TODO this seems a bit of a hack
if percentCount(format) == 1 {
// exactly one '%' format specifier - try to use it
fmt.Fprintf(w, string(format), value.Interface());
} else {
// 0 or more then 1 '%' format specifier - ignore them
w.Write(format);
}
}
// Returns true if a non-empty field value was found.
func (f Format) print(w io.Write, format expr, value reflect.Value, index int) bool {
switch t := format.(type) {
case *empty:
return true;
case *alternative:
// print the contents of the first alternative with a non-empty field
var buf io.ByteBuffer;
b := f.print(&buf, t.x, value, index);
if !b {
b = f.print(&buf, t.y, value, index);
}
if b {
w.Write(buf.Data());
}
return index < 0 || b;
case *sequence:
b1 := f.print(w, t.x, value, index);
b2 := f.print(w, t.y, value, index);
return index < 0 || b1 && b2;
case *field:
var x reflect.Value;
switch t.name {
case "^":
if v, is_ptr := value.(reflect.PtrValue); is_ptr {
if v.Get() == nil {
return false;
}
x = v.Sub();
} else if v, is_array := value.(reflect.ArrayValue); is_array {
if index < 0 || v.Len() <= index {
return false;
}
x = v.Elem(index);
} else if v, is_interface := value.(reflect.InterfaceValue); is_interface {
if v.Get() == nil {
return false;
}
x = v.Value();
} else {
panic("not a ptr, array, or interface"); // TODO fix this
}
case "*":
x = value;
default:
if v, is_struct := value.(reflect.StructValue); is_struct {
x = getField(v, t.name);
} else {
panic ("not a struct"); // TODO fix this
}
}
format = t.format;
if format == nil {
format = f.getFormat(x);
}
b := f.print(w, format, x, index);
return index < 0 || b;
case *literal:
printf(w, t.value, value);
return true;
case *option:
// print the contents of the option if there is a non-empty field
var buf io.ByteBuffer;
b := f.print(&buf, t.x, value, -1);
if b {
w.Write(buf.Data());
}
return index < 0 || b;
case *repetition:
// print the contents of the repetition while there is a non-empty field
b := false;
for i := 0; ; i++ {
var buf io.ByteBuffer;
if f.print(&buf, t.x, value, i) {
w.Write(buf.Data());
b = true;
} else {
break;
}
}
return index < 0 || b;
case *custom:
b := t.f(w, value.Interface(), t.name);
return index < 0 || b;
}
panic("unreachable");
return false;
}
func (f Format) Apply(w io.Write, data interface{}) {
value := reflect.NewValue(data);
f.print(w, f.getFormat(value), value, -1);
}