1
0
mirror of https://github.com/golang/go synced 2024-10-05 02:21:22 -06:00
go/src/runtime/rt1_amd64_linux.c

467 lines
10 KiB
C
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "amd64_linux.h"
#include "signals.h"
/* From /usr/include/asm-x86_64/sigcontext.h */
struct _fpstate {
uint16 cwd;
uint16 swd;
uint16 twd; /* Note this is not the same as the 32bit/x87/FSAVE twd */
uint16 fop;
uint64 rip;
uint32 rdp;
uint32 mxcsr;
uint32 mxcsr_mask;
uint32 st_space[32]; /* 8*16 bytes for each FP-reg */
uint32 xmm_space[64]; /* 16*16 bytes for each XMM-reg */
uint32 reserved2[24];
};
struct sigcontext {
uint64 r8;
uint64 r9;
uint64 r10;
uint64 r11;
uint64 r12;
uint64 r13;
uint64 r14;
uint64 r15;
uint64 rdi;
uint64 rsi;
uint64 rbp;
uint64 rbx;
uint64 rdx;
uint64 rax;
uint64 rcx;
uint64 rsp;
uint64 rip;
uint64 eflags; /* RFLAGS */
uint16 cs;
uint16 gs;
uint16 fs;
uint16 __pad0;
uint64 err;
uint64 trapno;
uint64 oldmask;
uint64 cr2;
struct _fpstate *fpstate; /* zero when no FPU context */
uint64 reserved1[8];
};
/* From /usr/include/asm-x86_64/signal.h */
typedef struct sigaltstack {
void /*__user*/ *ss_sp;
int32 ss_flags;
uint64 ss_size;
} stack_t;
typedef uint64 sigset_t;
/* From /usr/include/asm-x86_64/ucontext.h */
struct ucontext {
uint64 uc_flags;
struct ucontext *uc_link;
stack_t uc_stack;
struct sigcontext uc_mcontext;
sigset_t uc_sigmask; /* mask last for extensibility */
};
void
print_sigcontext(struct sigcontext *sc)
{
prints("\nrax 0x"); sys·printpointer((void*)sc->rax);
prints("\nrbx 0x"); sys·printpointer((void*)sc->rbx);
prints("\nrcx 0x"); sys·printpointer((void*)sc->rcx);
prints("\nrdx 0x"); sys·printpointer((void*)sc->rdx);
prints("\nrdi 0x"); sys·printpointer((void*)sc->rdi);
prints("\nrsi 0x"); sys·printpointer((void*)sc->rsi);
prints("\nrbp 0x"); sys·printpointer((void*)sc->rbp);
prints("\nrsp 0x"); sys·printpointer((void*)sc->rsp);
prints("\nr8 0x"); sys·printpointer((void*)sc->r8 );
prints("\nr9 0x"); sys·printpointer((void*)sc->r9 );
prints("\nr10 0x"); sys·printpointer((void*)sc->r10);
prints("\nr11 0x"); sys·printpointer((void*)sc->r11);
prints("\nr12 0x"); sys·printpointer((void*)sc->r12);
prints("\nr13 0x"); sys·printpointer((void*)sc->r13);
prints("\nr14 0x"); sys·printpointer((void*)sc->r14);
prints("\nr15 0x"); sys·printpointer((void*)sc->r15);
prints("\nrip 0x"); sys·printpointer((void*)sc->rip);
prints("\nrflags 0x"); sys·printpointer((void*)sc->eflags);
prints("\ncs 0x"); sys·printpointer((void*)sc->cs);
prints("\nfs 0x"); sys·printpointer((void*)sc->fs);
prints("\ngs 0x"); sys·printpointer((void*)sc->gs);
prints("\n");
}
/*
* This assembler routine takes the args from registers, puts them on the stack,
* and calls sighandler().
*/
extern void sigtramp();
/*
* Rudimentary reverse-engineered definition of signal interface.
* You'd think it would be documented.
*/
/* From /usr/include/bits/siginfo.h */
typedef struct siginfo {
int32 si_signo; /* signal number */
int32 si_errno; /* errno association */
int32 si_code; /* signal code */
int32 si_status; /* exit value */
void *si_addr; /* faulting address */
/* more stuff here */
} siginfo;
/* From /usr/include/bits/sigaction.h */
/* (gri) Is this correct? See e.g. /usr/include/asm-x86_64/signal.h */
typedef struct sigaction {
union {
void (*sa_handler)(int32);
void (*sa_sigaction)(int32, siginfo *, void *);
} u; /* signal handler */
uint8 sa_mask[128]; /* signal mask to apply. 128? are they MORONS? */
int32 sa_flags; /* see signal options below */
void (*sa_restorer) (void); /* unused here; needed to return from trap? */
} sigaction;
/*
* For trace traps, disassemble instruction to see if it's INTB of known type.
*/
int32
inlinetrap(int32 sig, byte* pc)
{
extern void etext();
extern void _rt0_amd64_linux();
if(sig != 5 && sig != 11) /* 5 is for trap, but INTB 5 looks like SEGV */
return 0;
if(pc < (byte*)_rt0_amd64_linux || pc+2 >= (byte*)etext)
return 0;
if(pc[0] != 0xcd) /* INTB */
return 0;
switch(pc[1]) {
case 5:
prints("\nTRAP: array out of bounds\n");
break;
case 6:
prints("\nTRAP: leaving function with returning a value\n");
break;
default:
prints("\nTRAP: unknown run-time trap ");
sys·printint(pc[1]);
prints("\n");
}
return 1;
}
void
sighandler(int32 sig, siginfo* info, void** context)
{
if(panicking) // traceback already printed
sys·exit(2);
struct sigcontext *sc = &(((struct ucontext *)context)->uc_mcontext);
if(!inlinetrap(sig, (byte *)sc->rip)) {
if(sig < 0 || sig >= NSIG){
prints("Signal ");
sys·printint(sig);
}else{
prints(sigtab[sig].name);
}
}
prints("\nFaulting address: 0x"); sys·printpointer(info->si_addr);
prints("\npc: 0x"); sys·printpointer((void *)sc->rip);
prints("\n\n");
traceback((void *)sc->rip, (void *)sc->rsp, (void *)sc->r15);
tracebackothers((void*)sc->r15);
print_sigcontext(sc);
sys·breakpoint();
sys·exit(2);
}
static sigaction a;
void
initsig(void)
{
int32 i;
a.u.sa_sigaction = (void*)sigtramp;
a.sa_flags = 0x04; /* SA_SIGINFO */
for(i=0; i<sizeof(a.sa_mask); i++)
a.sa_mask[i] = 0xFF;
for(i = 0; i<NSIG; i++)
if(sigtab[i].catch){
sys·rt_sigaction(i, &a, (void*)0, 8);
}
}
// Linux futex.
//
// futexsleep(uint32 *addr, uint32 val)
// futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up one thread sleeping on addr.
// Futexsleep is allowed to wake up spuriously.
enum
{
FUTEX_WAIT = 0,
FUTEX_WAKE = 1,
EINTR = 4,
EAGAIN = 11,
};
// TODO(rsc) I tried using 1<<40 here but futex woke up (-ETIMEDOUT).
// I wonder if the timespec that gets to the kernel
// actually has two 32-bit numbers in it, so tha
// a 64-bit 1<<40 ends up being 0 seconds,
// 1<<8 nanoseconds.
static struct timespec longtime =
{
1<<30, // 34 years
0
};
// Atomically,
// if(*addr == val) sleep
// Might be woken up spuriously; that's allowed.
static void
futexsleep(uint32 *addr, uint32 val)
{
int64 ret;
ret = futex(addr, FUTEX_WAIT, val, &longtime, nil, 0);
if(ret >= 0 || ret == -EAGAIN || ret == -EINTR)
return;
prints("futexsleep addr=");
sys·printpointer(addr);
prints(" val=");
sys·printint(val);
prints(" returned ");
sys·printint(ret);
prints("\n");
*(int32*)0x1005 = 0x1005;
}
// If any procs are sleeping on addr, wake up at least one.
static void
futexwakeup(uint32 *addr)
{
int64 ret;
ret = futex(addr, FUTEX_WAKE, 1, nil, nil, 0);
if(ret >= 0)
return;
// I don't know that futex wakeup can return
// EAGAIN or EINTR, but if it does, it would be
// safe to loop and call futex again.
prints("futexwakeup addr=");
sys·printpointer(addr);
prints(" returned ");
sys·printint(ret);
prints("\n");
*(int32*)0x1006 = 0x1006;
}
// Lock and unlock.
//
// The lock state is a single 32-bit word that holds
// a 31-bit count of threads waiting for the lock
// and a single bit (the low bit) saying whether the lock is held.
// The uncontended case runs entirely in user space.
// When contention is detected, we defer to the kernel (futex).
//
// A reminder: compare-and-swap cas(addr, old, new) does
// if(*addr == old) { *addr = new; return 1; }
// else return 0;
// but atomically.
void
lock(Lock *l)
{
uint32 v;
again:
v = l->key;
if((v&1) == 0){
if(cas(&l->key, v, v|1)){
// Lock wasn't held; we grabbed it.
return;
}
goto again;
}
// Lock was held; try to add ourselves to the waiter count.
if(!cas(&l->key, v, v+2))
goto again;
// We're accounted for, now sleep in the kernel.
//
// We avoid the obvious lock/unlock race because
// the kernel won't put us to sleep if l->key has
// changed underfoot and is no longer v+2.
//
// We only really care that (v&1) == 1 (the lock is held),
// and in fact there is a futex variant that could
// accomodate that check, but let's not get carried away.)
futexsleep(&l->key, v+2);
// We're awake: remove ourselves from the count.
for(;;){
v = l->key;
if(v < 2)
throw("bad lock key");
if(cas(&l->key, v, v-2))
break;
}
// Try for the lock again.
goto again;
}
void
unlock(Lock *l)
{
uint32 v;
// Atomically get value and clear lock bit.
again:
v = l->key;
if((v&1) == 0)
throw("unlock of unlocked lock");
if(!cas(&l->key, v, v&~1))
goto again;
// If there were waiters, wake one.
if(v & ~1)
futexwakeup(&l->key);
}
// One-time notifications.
//
// Since the lock/unlock implementation already
// takes care of sleeping in the kernel, we just reuse it.
// (But it's a weird use, so it gets its own interface.)
//
// We use a lock to represent the event:
// unlocked == event has happened.
// Thus the lock starts out locked, and to wait for the
// event you try to lock the lock. To signal the event,
// you unlock the lock.
void
noteclear(Note *n)
{
n->lock.key = 0; // memset(n, 0, sizeof *n)
lock(&n->lock);
}
void
notewakeup(Note *n)
{
unlock(&n->lock);
}
void
notesleep(Note *n)
{
lock(&n->lock);
unlock(&n->lock); // Let other sleepers find out too.
}
// Clone, the Linux rfork.
enum
{
CLONE_VM = 0x100,
CLONE_FS = 0x200,
CLONE_FILES = 0x400,
CLONE_SIGHAND = 0x800,
CLONE_PTRACE = 0x2000,
CLONE_VFORK = 0x4000,
CLONE_PARENT = 0x8000,
CLONE_THREAD = 0x10000,
CLONE_NEWNS = 0x20000,
CLONE_SYSVSEM = 0x40000,
CLONE_SETTLS = 0x80000,
CLONE_PARENT_SETTID = 0x100000,
CLONE_CHILD_CLEARTID = 0x200000,
CLONE_UNTRACED = 0x800000,
CLONE_CHILD_SETTID = 0x1000000,
CLONE_STOPPED = 0x2000000,
CLONE_NEWUTS = 0x4000000,
CLONE_NEWIPC = 0x8000000,
};
void
newosproc(M *m, G *g, void *stk, void (*fn)(void))
{
int64 ret;
int32 flags;
flags = CLONE_PARENT /* getppid doesn't change in child */
| CLONE_VM /* share memory */
| CLONE_FS /* share cwd, etc */
| CLONE_FILES /* share fd table */
| CLONE_SIGHAND /* share sig handler table */
| CLONE_PTRACE /* revisit - okay for now */
| CLONE_THREAD /* revisit - okay for now */
;
if(0){
prints("newosproc stk=");
sys·printpointer(stk);
prints(" m=");
sys·printpointer(m);
prints(" g=");
sys·printpointer(g);
prints(" fn=");
sys·printpointer(fn);
prints(" clone=");
sys·printpointer(clone);
prints("\n");
}
ret = clone(flags, stk, m, g, fn);
if(ret < 0)
*(int32*)123 = 123;
}
void
sys·sleep(int64 ms)
{
struct timeval tv;
tv.tv_sec = ms/1000;
tv.tv_usec = ms%1000 * 1000;
select(0, nil, nil, nil, &tv);
}
void
osinit(void)
{
}