1
0
mirror of https://github.com/golang/go synced 2024-11-19 07:14:45 -07:00
go/ssa/print.go

418 lines
9.5 KiB
Go
Raw Normal View History

package ssa
// This file implements the String() methods for all Value and
// Instruction types.
import (
"bytes"
"fmt"
"go/ast"
"io"
"sort"
"code.google.com/p/go.tools/go/types"
)
// relName returns the name of v relative to i.
// In most cases, this is identical to v.Name(), but for references to
// Functions (including methods) and Globals, the FullName is used
// instead, explicitly package-qualified for cross-package references.
//
func relName(v Value, i Instruction) string {
switch v := v.(type) {
case *Global:
if i != nil && v.Pkg == i.Parent().Pkg {
return v.Name()
}
return v.FullName()
case *Function:
var pkg *Package
if i != nil {
pkg = i.Parent().Pkg
}
return v.fullName(pkg)
}
return v.Name()
}
// Value.String()
//
// This method is provided only for debugging.
// It never appears in disassembly, which uses Value.Name().
func (v *Const) String() string {
return v.Name()
}
func (v *Parameter) String() string {
return fmt.Sprintf("parameter %s : %s", v.Name(), v.Type())
}
func (v *Capture) String() string {
return fmt.Sprintf("capture %s : %s", v.Name(), v.Type())
}
func (v *Global) String() string {
return v.FullName()
}
func (v *Builtin) String() string {
return fmt.Sprintf("builtin %s", v.Name())
}
func (v *Function) String() string {
return v.fullName(nil)
}
// FullName returns g's package-qualified name.
func (g *Global) FullName() string {
return fmt.Sprintf("%s.%s", g.Pkg.Object.Path(), g.name)
}
// Instruction.String()
func (v *Alloc) String() string {
op := "local"
if v.Heap {
op = "new"
}
return fmt.Sprintf("%s %s", op, deref(v.Type()))
}
func (v *Phi) String() string {
var b bytes.Buffer
b.WriteString("phi [")
for i, edge := range v.Edges {
if i > 0 {
b.WriteString(", ")
}
// Be robust against malformed CFG.
blockname := "?"
if v.block != nil && i < len(v.block.Preds) {
blockname = v.block.Preds[i].String()
}
b.WriteString(blockname)
b.WriteString(": ")
edgeVal := "<nil>" // be robust
if edge != nil {
edgeVal = relName(edge, v)
}
b.WriteString(edgeVal)
}
b.WriteString("]")
if v.Comment != "" {
b.WriteString(" #")
b.WriteString(v.Comment)
}
return b.String()
}
func printCall(v *CallCommon, prefix string, instr Instruction) string {
var b bytes.Buffer
b.WriteString(prefix)
if !v.IsInvoke() {
b.WriteString(relName(v.Func, instr))
} else {
name := v.Recv.Type().Underlying().(*types.Interface).Method(v.Method).Name()
fmt.Fprintf(&b, "invoke %s.%s [#%d]", relName(v.Recv, instr), name, v.Method)
}
b.WriteString("(")
for i, arg := range v.Args {
if i > 0 {
b.WriteString(", ")
}
b.WriteString(relName(arg, instr))
}
if v.HasEllipsis {
b.WriteString("...")
}
b.WriteString(")")
return b.String()
}
func (c *CallCommon) String() string {
return printCall(c, "", nil)
}
func (v *Call) String() string {
return printCall(&v.Call, "", v)
}
func (v *ChangeType) String() string {
return fmt.Sprintf("changetype %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
}
func (v *BinOp) String() string {
return fmt.Sprintf("%s %s %s", relName(v.X, v), v.Op.String(), relName(v.Y, v))
}
func (v *UnOp) String() string {
return fmt.Sprintf("%s%s%s", v.Op, relName(v.X, v), commaOk(v.CommaOk))
}
func (v *Convert) String() string {
return fmt.Sprintf("convert %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
}
func (v *ChangeInterface) String() string {
return fmt.Sprintf("change interface %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
}
func (v *MakeInterface) String() string {
return fmt.Sprintf("make %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
}
func (v *MakeClosure) String() string {
var b bytes.Buffer
fmt.Fprintf(&b, "make closure %s", relName(v.Fn, v))
if v.Bindings != nil {
b.WriteString(" [")
for i, c := range v.Bindings {
if i > 0 {
b.WriteString(", ")
}
b.WriteString(relName(c, v))
}
b.WriteString("]")
}
return b.String()
}
func (v *MakeSlice) String() string {
var b bytes.Buffer
b.WriteString("make ")
b.WriteString(v.Type().String())
b.WriteString(" ")
b.WriteString(relName(v.Len, v))
b.WriteString(" ")
b.WriteString(relName(v.Cap, v))
return b.String()
}
func (v *Slice) String() string {
var b bytes.Buffer
b.WriteString("slice ")
b.WriteString(relName(v.X, v))
b.WriteString("[")
if v.Low != nil {
b.WriteString(relName(v.Low, v))
}
b.WriteString(":")
if v.High != nil {
b.WriteString(relName(v.High, v))
}
b.WriteString("]")
return b.String()
}
func (v *MakeMap) String() string {
res := ""
if v.Reserve != nil {
res = relName(v.Reserve, v)
}
return fmt.Sprintf("make %s %s", v.Type(), res)
}
func (v *MakeChan) String() string {
return fmt.Sprintf("make %s %s", v.Type(), relName(v.Size, v))
}
func (v *FieldAddr) String() string {
st := deref(v.X.Type()).Underlying().(*types.Struct)
// Be robust against a bad index.
name := "?"
if 0 <= v.Field && v.Field < st.NumFields() {
name = st.Field(v.Field).Name()
}
return fmt.Sprintf("&%s.%s [#%d]", relName(v.X, v), name, v.Field)
}
func (v *Field) String() string {
st := v.X.Type().Underlying().(*types.Struct)
// Be robust against a bad index.
name := "?"
if 0 <= v.Field && v.Field < st.NumFields() {
name = st.Field(v.Field).Name()
}
return fmt.Sprintf("%s.%s [#%d]", relName(v.X, v), name, v.Field)
}
func (v *IndexAddr) String() string {
return fmt.Sprintf("&%s[%s]", relName(v.X, v), relName(v.Index, v))
}
func (v *Index) String() string {
return fmt.Sprintf("%s[%s]", relName(v.X, v), relName(v.Index, v))
}
func (v *Lookup) String() string {
return fmt.Sprintf("%s[%s]%s", relName(v.X, v), relName(v.Index, v), commaOk(v.CommaOk))
}
func (v *Range) String() string {
return "range " + relName(v.X, v)
}
func (v *Next) String() string {
return "next " + relName(v.Iter, v)
}
func (v *TypeAssert) String() string {
return fmt.Sprintf("typeassert%s %s.(%s)", commaOk(v.CommaOk), relName(v.X, v), v.AssertedType)
}
func (v *Extract) String() string {
return fmt.Sprintf("extract %s #%d", relName(v.Tuple, v), v.Index)
}
func (s *Jump) String() string {
// Be robust against malformed CFG.
blockname := "?"
if s.block != nil && len(s.block.Succs) == 1 {
blockname = s.block.Succs[0].String()
}
return fmt.Sprintf("jump %s", blockname)
}
func (s *If) String() string {
// Be robust against malformed CFG.
tblockname, fblockname := "?", "?"
if s.block != nil && len(s.block.Succs) == 2 {
tblockname = s.block.Succs[0].String()
fblockname = s.block.Succs[1].String()
}
return fmt.Sprintf("if %s goto %s else %s", relName(s.Cond, s), tblockname, fblockname)
}
func (s *Go) String() string {
return printCall(&s.Call, "go ", s)
}
func (s *Panic) String() string {
return "panic " + relName(s.X, s)
}
func (s *Ret) String() string {
var b bytes.Buffer
b.WriteString("ret")
for i, r := range s.Results {
if i == 0 {
b.WriteString(" ")
} else {
b.WriteString(", ")
}
b.WriteString(relName(r, s))
}
return b.String()
}
func (*RunDefers) String() string {
return "rundefers"
}
func (s *Send) String() string {
return fmt.Sprintf("send %s <- %s", relName(s.Chan, s), relName(s.X, s))
}
func (s *Defer) String() string {
return printCall(&s.Call, "defer ", s)
}
func (s *Select) String() string {
var b bytes.Buffer
for i, st := range s.States {
if i > 0 {
b.WriteString(", ")
}
if st.Dir == ast.RECV {
b.WriteString("<-")
b.WriteString(relName(st.Chan, s))
} else {
b.WriteString(relName(st.Chan, s))
b.WriteString("<-")
b.WriteString(relName(st.Send, s))
}
}
non := ""
if !s.Blocking {
non = "non"
}
return fmt.Sprintf("select %sblocking [%s]", non, b.String())
}
func (s *Store) String() string {
return fmt.Sprintf("*%s = %s", relName(s.Addr, s), relName(s.Val, s))
}
func (s *MapUpdate) String() string {
return fmt.Sprintf("%s[%s] = %s", relName(s.Map, s), relName(s.Key, s), relName(s.Value, s))
}
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
func (s *DebugRef) String() string {
p := s.Parent().Prog.Fset.Position(s.pos)
return fmt.Sprintf("; %s is %s @ %d:%d", s.X.Name(), s.object, p.Line, p.Column)
}
func (p *Package) String() string {
return "package " + p.Object.Path()
}
func (p *Package) DumpTo(w io.Writer) {
fmt.Fprintf(w, "%s:\n", p)
var names []string
maxname := 0
for name := range p.Members {
if l := len(name); l > maxname {
maxname = l
}
names = append(names, name)
}
sort.Strings(names)
for _, name := range names {
switch mem := p.Members[name].(type) {
case *NamedConst:
fmt.Fprintf(w, " const %-*s %s = %s\n", maxname, name, mem.Name(), mem.Value.Name())
case *Function:
fmt.Fprintf(w, " func %-*s %s\n", maxname, name, mem.Type())
case *Type:
fmt.Fprintf(w, " type %-*s %s\n", maxname, name, mem.Type().Underlying())
// We display only mset(*T) since its keys
// are a superset of mset(T)'s keys, though the
// methods themselves may differ,
// e.g. promotion wrappers.
// NB: if mem.Type() is a pointer, mset is empty.
//
// TODO(adonovan): opt: avoid constructing the
// entire ssa.MethodSet by using the
// types.MethodSet if possible.
mset := p.Prog.MethodSet(types.NewPointer(mem.Type()))
var keys []string
for id := range mset {
keys = append(keys, id)
}
sort.Strings(keys)
for _, id := range keys {
method := mset[id]
// TODO(adonovan): show pointerness of receiver of declared method, not the index
fmt.Fprintf(w, " method %s %s\n", id, method.Signature)
}
case *Global:
fmt.Fprintf(w, " var %-*s %s\n", maxname, name, mem.Type())
}
}
}
func commaOk(x bool) string {
if x {
return ",ok"
}
return ""
}