1
0
mirror of https://github.com/golang/go synced 2024-11-20 02:34:42 -07:00
go/src/runtime/type.go

114 lines
2.3 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Runtime type representation.
package runtime
import "unsafe"
// Needs to be in sync with ../cmd/compile/internal/ld/decodesym.go:/^func.commonsize,
// ../cmd/compile/internal/gc/reflect.go:/^func.dcommontype and
// ../reflect/type.go:/^type.rtype.
type _type struct {
size uintptr
ptrdata uintptr // size of memory prefix holding all pointers
hash uint32
_unused uint8
align uint8
fieldalign uint8
kind uint8
alg *typeAlg
runtime: replace GC programs with simpler encoding, faster decoder Small types record the location of pointers in their memory layout by using a simple bitmap. In Go 1.4 the bitmap held 4-bit entries, and in Go 1.5 the bitmap holds 1-bit entries, but in both cases using a bitmap for a large type containing arrays does not make sense: if someone refers to the type [1<<28]*byte in a program in such a way that the type information makes it into the binary, it would be a waste of space to write a 128 MB (for 4-bit entries) or even 32 MB (for 1-bit entries) bitmap full of 1s into the binary or even to keep one in memory during the execution of the program. For large types containing arrays, it is much more compact to describe the locations of pointers using a notation that can express repetition than to lay out a bitmap of pointers. Go 1.4 included such a notation, called ``GC programs'' but it was complex, required recursion during decoding, and was generally slow. Dmitriy measured the execution of these programs writing directly to the heap bitmap as being 7x slower than copying from a preunrolled 4-bit mask (and frankly that code was not terribly fast either). For some tests, unrollgcprog1 was seen costing as much as 3x more than the rest of malloc combined. This CL introduces a different form for the GC programs. They use a simple Lempel-Ziv-style encoding of the 1-bit pointer information, in which the only operations are (1) emit the following n bits and (2) repeat the last n bits c more times. This encoding can be generated directly from the Go type information (using repetition only for arrays or large runs of non-pointer data) and it can be decoded very efficiently. In particular the decoding requires little state and no recursion, so that the entire decoding can run without any memory accesses other than the reads of the encoding and the writes of the decoded form to the heap bitmap. For recursive types like arrays of arrays of arrays, the inner instructions are only executed once, not n times, so that large repetitions run at full speed. (In contrast, large repetitions in the old programs repeated the individual bit-level layout of the inner data over and over.) The result is as much as 25x faster decoding compared to the old form. Because the old decoder was so slow, Go 1.4 had three (or so) cases for how to set the heap bitmap bits for an allocation of a given type: (1) If the type had an even number of words up to 32 words, then the 4-bit pointer mask for the type fit in no more than 16 bytes; store the 4-bit pointer mask directly in the binary and copy from it. (1b) If the type had an odd number of words up to 15 words, then the 4-bit pointer mask for the type, doubled to end on a byte boundary, fit in no more than 16 bytes; store that doubled mask directly in the binary and copy from it. (2) If the type had an even number of words up to 128 words, or an odd number of words up to 63 words (again due to doubling), then the 4-bit pointer mask would fit in a 64-byte unrolled mask. Store a GC program in the binary, but leave space in the BSS for the unrolled mask. Execute the GC program to construct the mask the first time it is needed, and thereafter copy from the mask. (3) Otherwise, store a GC program and execute it to write directly to the heap bitmap each time an object of that type is allocated. (This is the case that was 7x slower than the other two.) Because the new pointer masks store 1-bit entries instead of 4-bit entries and because using the decoder no longer carries a significant overhead, after this CL (that is, for Go 1.5) there are only two cases: (1) If the type is 128 words or less (no condition about odd or even), store the 1-bit pointer mask directly in the binary and use it to initialize the heap bitmap during malloc. (Implemented in CL 9702.) (2) There is no case 2 anymore. (3) Otherwise, store a GC program and execute it to write directly to the heap bitmap each time an object of that type is allocated. Executing the GC program directly into the heap bitmap (case (3) above) was disabled for the Go 1.5 dev cycle, both to avoid needing to use GC programs for typedmemmove and to avoid updating that code as the heap bitmap format changed. Typedmemmove no longer uses this type information; as of CL 9886 it uses the heap bitmap directly. Now that the heap bitmap format is stable, we reintroduce GC programs and their space savings. Benchmarks for heapBitsSetType, before this CL vs this CL: name old mean new mean delta SetTypePtr 7.59ns × (0.99,1.02) 5.16ns × (1.00,1.00) -32.05% (p=0.000) SetTypePtr8 21.0ns × (0.98,1.05) 21.4ns × (1.00,1.00) ~ (p=0.179) SetTypePtr16 24.1ns × (0.99,1.01) 24.6ns × (1.00,1.00) +2.41% (p=0.001) SetTypePtr32 31.2ns × (0.99,1.01) 32.4ns × (0.99,1.02) +3.72% (p=0.001) SetTypePtr64 45.2ns × (1.00,1.00) 47.2ns × (1.00,1.00) +4.42% (p=0.000) SetTypePtr126 75.8ns × (0.99,1.01) 79.1ns × (1.00,1.00) +4.25% (p=0.000) SetTypePtr128 74.3ns × (0.99,1.01) 77.6ns × (1.00,1.01) +4.55% (p=0.000) SetTypePtrSlice 726ns × (1.00,1.01) 712ns × (1.00,1.00) -1.95% (p=0.001) SetTypeNode1 20.0ns × (0.99,1.01) 20.7ns × (1.00,1.00) +3.71% (p=0.000) SetTypeNode1Slice 112ns × (1.00,1.00) 113ns × (0.99,1.00) ~ (p=0.070) SetTypeNode8 23.9ns × (1.00,1.00) 24.7ns × (1.00,1.01) +3.18% (p=0.000) SetTypeNode8Slice 294ns × (0.99,1.02) 287ns × (0.99,1.01) -2.38% (p=0.015) SetTypeNode64 52.8ns × (0.99,1.03) 51.8ns × (0.99,1.01) ~ (p=0.069) SetTypeNode64Slice 1.13µs × (0.99,1.05) 1.14µs × (0.99,1.00) ~ (p=0.767) SetTypeNode64Dead 36.0ns × (1.00,1.01) 32.5ns × (0.99,1.00) -9.67% (p=0.000) SetTypeNode64DeadSlice 1.43µs × (0.99,1.01) 1.40µs × (1.00,1.00) -2.39% (p=0.001) SetTypeNode124 75.7ns × (1.00,1.01) 79.0ns × (1.00,1.00) +4.44% (p=0.000) SetTypeNode124Slice 1.94µs × (1.00,1.01) 2.04µs × (0.99,1.01) +4.98% (p=0.000) SetTypeNode126 75.4ns × (1.00,1.01) 77.7ns × (0.99,1.01) +3.11% (p=0.000) SetTypeNode126Slice 1.95µs × (0.99,1.01) 2.03µs × (1.00,1.00) +3.74% (p=0.000) SetTypeNode128 85.4ns × (0.99,1.01) 122.0ns × (1.00,1.00) +42.89% (p=0.000) SetTypeNode128Slice 2.20µs × (1.00,1.01) 2.36µs × (0.98,1.02) +7.48% (p=0.001) SetTypeNode130 83.3ns × (1.00,1.00) 123.0ns × (1.00,1.00) +47.61% (p=0.000) SetTypeNode130Slice 2.30µs × (0.99,1.01) 2.40µs × (0.98,1.01) +4.37% (p=0.000) SetTypeNode1024 498ns × (1.00,1.00) 537ns × (1.00,1.00) +7.96% (p=0.000) SetTypeNode1024Slice 15.5µs × (0.99,1.01) 17.8µs × (1.00,1.00) +15.27% (p=0.000) The above compares always using a cached pointer mask (and the corresponding waste of memory) against using the programs directly. Some slowdown is expected, in exchange for having a better general algorithm. The GC programs kick in for SetTypeNode128, SetTypeNode130, SetTypeNode1024, along with the slice variants of those. It is possible that the cutoff of 128 words (bits) should be raised in a followup CL, but even with this low cutoff the GC programs are faster than Go 1.4's "fast path" non-GC program case. Benchmarks for heapBitsSetType, Go 1.4 vs this CL: name old mean new mean delta SetTypePtr 6.89ns × (1.00,1.00) 5.17ns × (1.00,1.00) -25.02% (p=0.000) SetTypePtr8 25.8ns × (0.97,1.05) 21.5ns × (1.00,1.00) -16.70% (p=0.000) SetTypePtr16 39.8ns × (0.97,1.02) 24.7ns × (0.99,1.01) -37.81% (p=0.000) SetTypePtr32 68.8ns × (0.98,1.01) 32.2ns × (1.00,1.01) -53.18% (p=0.000) SetTypePtr64 130ns × (1.00,1.00) 47ns × (1.00,1.00) -63.67% (p=0.000) SetTypePtr126 241ns × (0.99,1.01) 79ns × (1.00,1.01) -67.25% (p=0.000) SetTypePtr128 2.07µs × (1.00,1.00) 0.08µs × (1.00,1.00) -96.27% (p=0.000) SetTypePtrSlice 1.05µs × (0.99,1.01) 0.72µs × (0.99,1.02) -31.70% (p=0.000) SetTypeNode1 16.0ns × (0.99,1.01) 20.8ns × (0.99,1.03) +29.91% (p=0.000) SetTypeNode1Slice 184ns × (0.99,1.01) 112ns × (0.99,1.01) -39.26% (p=0.000) SetTypeNode8 29.5ns × (0.97,1.02) 24.6ns × (1.00,1.00) -16.50% (p=0.000) SetTypeNode8Slice 624ns × (0.98,1.02) 285ns × (1.00,1.00) -54.31% (p=0.000) SetTypeNode64 135ns × (0.96,1.08) 52ns × (0.99,1.02) -61.32% (p=0.000) SetTypeNode64Slice 3.83µs × (1.00,1.00) 1.14µs × (0.99,1.01) -70.16% (p=0.000) SetTypeNode64Dead 134ns × (0.99,1.01) 32ns × (1.00,1.01) -75.74% (p=0.000) SetTypeNode64DeadSlice 3.83µs × (0.99,1.00) 1.40µs × (1.00,1.01) -63.42% (p=0.000) SetTypeNode124 240ns × (0.99,1.01) 79ns × (1.00,1.01) -67.05% (p=0.000) SetTypeNode124Slice 7.27µs × (1.00,1.00) 2.04µs × (1.00,1.00) -71.95% (p=0.000) SetTypeNode126 2.06µs × (0.99,1.01) 0.08µs × (0.99,1.01) -96.23% (p=0.000) SetTypeNode126Slice 64.4µs × (1.00,1.00) 2.0µs × (1.00,1.00) -96.85% (p=0.000) SetTypeNode128 2.09µs × (1.00,1.01) 0.12µs × (1.00,1.00) -94.15% (p=0.000) SetTypeNode128Slice 65.4µs × (1.00,1.00) 2.4µs × (0.99,1.03) -96.39% (p=0.000) SetTypeNode130 2.11µs × (1.00,1.00) 0.12µs × (1.00,1.00) -94.18% (p=0.000) SetTypeNode130Slice 66.3µs × (1.00,1.00) 2.4µs × (0.97,1.08) -96.34% (p=0.000) SetTypeNode1024 16.0µs × (1.00,1.01) 0.5µs × (1.00,1.00) -96.65% (p=0.000) SetTypeNode1024Slice 512µs × (1.00,1.00) 18µs × (0.98,1.04) -96.45% (p=0.000) SetTypeNode124 uses a 124 data + 2 ptr = 126-word allocation. Both Go 1.4 and this CL are using pointer bitmaps for this case, so that's an overall 3x speedup for using pointer bitmaps. SetTypeNode128 uses a 128 data + 2 ptr = 130-word allocation. Both Go 1.4 and this CL are running the GC program for this case, so that's an overall 17x speedup when using GC programs (and I've seen >20x on other systems). Comparing Go 1.4's SetTypeNode124 (pointer bitmap) against this CL's SetTypeNode128 (GC program), the slow path in the code in this CL is 2x faster than the fast path in Go 1.4. The Go 1 benchmarks are basically unaffected compared to just before this CL. Go 1 benchmarks, before this CL vs this CL: name old mean new mean delta BinaryTree17 5.87s × (0.97,1.04) 5.91s × (0.96,1.04) ~ (p=0.306) Fannkuch11 4.38s × (1.00,1.00) 4.37s × (1.00,1.01) -0.22% (p=0.006) FmtFprintfEmpty 90.7ns × (0.97,1.10) 89.3ns × (0.96,1.09) ~ (p=0.280) FmtFprintfString 282ns × (0.98,1.04) 287ns × (0.98,1.07) +1.72% (p=0.039) FmtFprintfInt 269ns × (0.99,1.03) 282ns × (0.97,1.04) +4.87% (p=0.000) FmtFprintfIntInt 478ns × (0.99,1.02) 481ns × (0.99,1.02) +0.61% (p=0.048) FmtFprintfPrefixedInt 399ns × (0.98,1.03) 400ns × (0.98,1.05) ~ (p=0.533) FmtFprintfFloat 563ns × (0.99,1.01) 570ns × (1.00,1.01) +1.37% (p=0.000) FmtManyArgs 1.89µs × (0.99,1.01) 1.92µs × (0.99,1.02) +1.88% (p=0.000) GobDecode 15.2ms × (0.99,1.01) 15.2ms × (0.98,1.05) ~ (p=0.609) GobEncode 11.6ms × (0.98,1.03) 11.9ms × (0.98,1.04) +2.17% (p=0.000) Gzip 648ms × (0.99,1.01) 648ms × (1.00,1.01) ~ (p=0.835) Gunzip 142ms × (1.00,1.00) 143ms × (1.00,1.01) ~ (p=0.169) HTTPClientServer 90.5µs × (0.98,1.03) 91.5µs × (0.98,1.04) +1.04% (p=0.045) JSONEncode 31.5ms × (0.98,1.03) 31.4ms × (0.98,1.03) ~ (p=0.549) JSONDecode 111ms × (0.99,1.01) 107ms × (0.99,1.01) -3.21% (p=0.000) Mandelbrot200 6.01ms × (1.00,1.00) 6.01ms × (1.00,1.00) ~ (p=0.878) GoParse 6.54ms × (0.99,1.02) 6.61ms × (0.99,1.03) +1.08% (p=0.004) RegexpMatchEasy0_32 160ns × (1.00,1.01) 161ns × (1.00,1.00) +0.40% (p=0.000) RegexpMatchEasy0_1K 560ns × (0.99,1.01) 559ns × (0.99,1.01) ~ (p=0.088) RegexpMatchEasy1_32 138ns × (0.99,1.01) 138ns × (1.00,1.00) ~ (p=0.380) RegexpMatchEasy1_1K 877ns × (1.00,1.00) 878ns × (1.00,1.00) ~ (p=0.157) RegexpMatchMedium_32 251ns × (0.99,1.00) 251ns × (1.00,1.01) +0.28% (p=0.021) RegexpMatchMedium_1K 72.6µs × (1.00,1.00) 72.6µs × (1.00,1.00) ~ (p=0.539) RegexpMatchHard_32 3.84µs × (1.00,1.00) 3.84µs × (1.00,1.00) ~ (p=0.378) RegexpMatchHard_1K 117µs × (1.00,1.00) 117µs × (1.00,1.00) ~ (p=0.067) Revcomp 904ms × (0.99,1.02) 904ms × (0.99,1.01) ~ (p=0.943) Template 125ms × (0.99,1.02) 127ms × (0.99,1.01) +1.79% (p=0.000) TimeParse 627ns × (0.99,1.01) 622ns × (0.99,1.01) -0.88% (p=0.000) TimeFormat 655ns × (0.99,1.02) 655ns × (0.99,1.02) ~ (p=0.976) For the record, Go 1 benchmarks, Go 1.4 vs this CL: name old mean new mean delta BinaryTree17 4.61s × (0.97,1.05) 5.91s × (0.98,1.03) +28.35% (p=0.000) Fannkuch11 4.40s × (0.99,1.03) 4.41s × (0.99,1.01) ~ (p=0.212) FmtFprintfEmpty 102ns × (0.99,1.01) 84ns × (0.99,1.02) -18.38% (p=0.000) FmtFprintfString 302ns × (0.98,1.01) 303ns × (0.99,1.02) ~ (p=0.203) FmtFprintfInt 313ns × (0.97,1.05) 270ns × (0.99,1.01) -13.69% (p=0.000) FmtFprintfIntInt 524ns × (0.98,1.02) 477ns × (0.99,1.00) -8.87% (p=0.000) FmtFprintfPrefixedInt 424ns × (0.98,1.02) 386ns × (0.99,1.01) -8.96% (p=0.000) FmtFprintfFloat 652ns × (0.98,1.02) 594ns × (0.97,1.05) -8.97% (p=0.000) FmtManyArgs 2.13µs × (0.99,1.02) 1.94µs × (0.99,1.01) -8.92% (p=0.000) GobDecode 17.1ms × (0.99,1.02) 14.9ms × (0.98,1.03) -13.07% (p=0.000) GobEncode 13.5ms × (0.98,1.03) 11.5ms × (0.98,1.03) -15.25% (p=0.000) Gzip 656ms × (0.99,1.02) 647ms × (0.99,1.01) -1.29% (p=0.000) Gunzip 143ms × (0.99,1.02) 144ms × (0.99,1.01) ~ (p=0.204) HTTPClientServer 88.2µs × (0.98,1.02) 90.8µs × (0.98,1.01) +2.93% (p=0.000) JSONEncode 32.2ms × (0.98,1.02) 30.9ms × (0.97,1.04) -4.06% (p=0.001) JSONDecode 121ms × (0.98,1.02) 110ms × (0.98,1.05) -8.95% (p=0.000) Mandelbrot200 6.06ms × (0.99,1.01) 6.11ms × (0.98,1.04) ~ (p=0.184) GoParse 6.76ms × (0.97,1.04) 6.58ms × (0.98,1.05) -2.63% (p=0.003) RegexpMatchEasy0_32 195ns × (1.00,1.01) 155ns × (0.99,1.01) -20.43% (p=0.000) RegexpMatchEasy0_1K 479ns × (0.98,1.03) 535ns × (0.99,1.02) +11.59% (p=0.000) RegexpMatchEasy1_32 169ns × (0.99,1.02) 131ns × (0.99,1.03) -22.44% (p=0.000) RegexpMatchEasy1_1K 1.53µs × (0.99,1.01) 0.87µs × (0.99,1.02) -43.07% (p=0.000) RegexpMatchMedium_32 334ns × (0.99,1.01) 242ns × (0.99,1.01) -27.53% (p=0.000) RegexpMatchMedium_1K 125µs × (1.00,1.01) 72µs × (0.99,1.03) -42.53% (p=0.000) RegexpMatchHard_32 6.03µs × (0.99,1.01) 3.79µs × (0.99,1.01) -37.12% (p=0.000) RegexpMatchHard_1K 189µs × (0.99,1.02) 115µs × (0.99,1.01) -39.20% (p=0.000) Revcomp 935ms × (0.96,1.03) 926ms × (0.98,1.02) ~ (p=0.083) Template 146ms × (0.97,1.05) 119ms × (0.99,1.01) -18.37% (p=0.000) TimeParse 660ns × (0.99,1.01) 624ns × (0.99,1.02) -5.43% (p=0.000) TimeFormat 670ns × (0.98,1.02) 710ns × (1.00,1.01) +5.97% (p=0.000) This CL is a bit larger than I would like, but the compiler, linker, runtime, and package reflect all need to be in sync about the format of these programs, so there is no easy way to split this into independent changes (at least while keeping the build working at each change). Fixes #9625. Fixes #10524. Change-Id: I9e3e20d6097099d0f8532d1cb5b1af528804989a Reviewed-on: https://go-review.googlesource.com/9888 Reviewed-by: Austin Clements <austin@google.com> Run-TryBot: Russ Cox <rsc@golang.org>
2015-05-07 23:43:18 -06:00
// gcdata stores the GC type data for the garbage collector.
// If the KindGCProg bit is set in kind, gcdata is a GC program.
// Otherwise it is a ptrmask bitmap. See mbitmap.go for details.
gcdata *byte
_string string
x *uncommontype
}
type method struct {
name *string
pkgpath *string
mtyp *_type
typ *_type
ifn unsafe.Pointer
tfn unsafe.Pointer
}
type uncommontype struct {
name *string
pkgpath *string
mhdr []method
}
type imethod struct {
name *string
pkgpath *string
_type *_type
}
type interfacetype struct {
typ _type
mhdr []imethod
}
type maptype struct {
typ _type
key *_type
elem *_type
bucket *_type // internal type representing a hash bucket
hmap *_type // internal type representing a hmap
keysize uint8 // size of key slot
indirectkey bool // store ptr to key instead of key itself
valuesize uint8 // size of value slot
indirectvalue bool // store ptr to value instead of value itself
bucketsize uint16 // size of bucket
reflexivekey bool // true if k==k for all keys
needkeyupdate bool // true if we need to update key on an overwrite
}
type arraytype struct {
typ _type
elem *_type
slice *_type
len uintptr
}
type chantype struct {
typ _type
elem *_type
dir uintptr
}
type slicetype struct {
typ _type
elem *_type
}
type functype struct {
typ _type
dotdotdot bool
in []*_type
out []*_type
}
type ptrtype struct {
typ _type
elem *_type
}
type structfield struct {
name *string
pkgpath *string
typ *_type
tag *string
offset uintptr
}
type structtype struct {
typ _type
fields []structfield
}