1
0
mirror of https://github.com/golang/go synced 2024-11-19 15:05:00 -07:00
go/src/pkg/runtime/malloc.go

431 lines
12 KiB
Go
Raw Normal View History

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"unsafe"
)
const (
flagNoScan = 1 << 0 // GC doesn't have to scan object
flagNoProfiling = 1 << 1 // must not profile
flagNoZero = 1 << 2 // don't zero memory
kindArray = 17
kindFunc = 19
kindInterface = 20
kindPtr = 22
kindStruct = 25
kindMask = 1<<6 - 1
kindGCProg = 1 << 6
kindNoPointers = 1 << 7
maxTinySize = 16
tinySizeClass = 2
maxSmallSize = 32 << 10
pageShift = 13
pageSize = 1 << pageShift
pageMask = pageSize - 1
)
// All zero-sized allocations return a pointer to this byte.
var zeroObject byte
// Maximum possible heap size.
var maxMem uintptr
// Allocate an object of size bytes.
// Small objects are allocated from the per-P cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
func gomallocgc(size uintptr, typ *_type, flags int) unsafe.Pointer {
if size == 0 {
return unsafe.Pointer(&zeroObject)
}
mp := acquirem()
if mp.mallocing != 0 {
gothrow("malloc/free - deadlock")
}
mp.mallocing = 1
size0 := size
c := mp.mcache
var s *mspan
var x unsafe.Pointer
if size <= maxSmallSize {
if flags&flagNoScan != 0 && size < maxTinySize {
// Tiny allocator.
//
// Tiny allocator combines several tiny allocation requests
// into a single memory block. The resulting memory block
// is freed when all subobjects are unreachable. The subobjects
// must be FlagNoScan (don't have pointers), this ensures that
// the amount of potentially wasted memory is bounded.
//
// Size of the memory block used for combining (maxTinySize) is tunable.
// Current setting is 16 bytes, which relates to 2x worst case memory
// wastage (when all but one subobjects are unreachable).
// 8 bytes would result in no wastage at all, but provides less
// opportunities for combining.
// 32 bytes provides more opportunities for combining,
// but can lead to 4x worst case wastage.
// The best case winning is 8x regardless of block size.
//
// Objects obtained from tiny allocator must not be freed explicitly.
// So when an object will be freed explicitly, we ensure that
// its size >= maxTinySize.
//
// SetFinalizer has a special case for objects potentially coming
// from tiny allocator, it such case it allows to set finalizers
// for an inner byte of a memory block.
//
// The main targets of tiny allocator are small strings and
// standalone escaping variables. On a json benchmark
// the allocator reduces number of allocations by ~12% and
// reduces heap size by ~20%.
tinysize := uintptr(c.tinysize)
if size <= tinysize {
tiny := unsafe.Pointer(c.tiny)
// Align tiny pointer for required (conservative) alignment.
if size&7 == 0 {
tiny = roundup(tiny, 8)
} else if size&3 == 0 {
tiny = roundup(tiny, 4)
} else if size&1 == 0 {
tiny = roundup(tiny, 2)
}
size1 := size + (uintptr(tiny) - uintptr(unsafe.Pointer(c.tiny)))
if size1 <= tinysize {
// The object fits into existing tiny block.
x = tiny
c.tiny = (*byte)(add(x, size))
c.tinysize -= uint(size1)
mp.mallocing = 0
releasem(mp)
return x
}
}
// Allocate a new maxTinySize block.
s = c.alloc[tinySizeClass]
v := s.freelist
if v == nil {
mp.scalararg[0] = tinySizeClass
onM(&mcacheRefill_m)
s = c.alloc[tinySizeClass]
v = s.freelist
}
s.freelist = v.next
s.ref++
//TODO: prefetch v.next
x = unsafe.Pointer(v)
(*[2]uint64)(x)[0] = 0
(*[2]uint64)(x)[1] = 0
// See if we need to replace the existing tiny block with the new one
// based on amount of remaining free space.
if maxTinySize-size > tinysize {
c.tiny = (*byte)(add(x, size))
c.tinysize = uint(maxTinySize - size)
}
size = maxTinySize
} else {
var sizeclass int8
if size <= 1024-8 {
sizeclass = size_to_class8[(size+7)>>3]
} else {
sizeclass = size_to_class128[(size-1024+127)>>7]
}
size = uintptr(class_to_size[sizeclass])
s = c.alloc[sizeclass]
v := s.freelist
if v == nil {
mp.scalararg[0] = uint(sizeclass)
onM(&mcacheRefill_m)
s = c.alloc[sizeclass]
v = s.freelist
}
s.freelist = v.next
s.ref++
//TODO: prefetch
x = unsafe.Pointer(v)
if flags&flagNoZero == 0 {
v.next = nil
if size > 2*ptrSize && ((*[2]uintptr)(x))[1] != 0 {
memclr(unsafe.Pointer(v), size)
}
}
}
c.local_cachealloc += int(size)
} else {
mp.scalararg[0] = uint(size)
mp.scalararg[1] = uint(flags)
onM(&largeAlloc_m)
s = (*mspan)(mp.ptrarg[0])
mp.ptrarg[0] = nil
x = unsafe.Pointer(uintptr(s.start << pageShift))
size = uintptr(s.elemsize)
}
// TODO: write markallocated in Go
mp.ptrarg[0] = x
mp.scalararg[0] = uint(size)
mp.scalararg[1] = uint(size0)
mp.ptrarg[1] = unsafe.Pointer(typ)
mp.scalararg[2] = uint(flags & flagNoScan)
onM(&markallocated_m)
mp.mallocing = 0
if raceenabled {
racemalloc(x, size)
}
if debug.allocfreetrace != 0 {
tracealloc(x, size, typ)
}
if flags&flagNoProfiling == 0 {
rate := MemProfileRate
if rate > 0 {
if size < uintptr(rate) && int32(size) < c.next_sample {
c.next_sample -= int32(size)
} else {
profilealloc(mp, x, size)
}
}
}
releasem(mp)
if memstats.heap_alloc >= memstats.next_gc {
gogc(0)
}
return x
}
// cmallocgc is a trampoline used to call the Go malloc from C.
func cmallocgc(size uintptr, typ *_type, flags int, ret *unsafe.Pointer) {
*ret = gomallocgc(size, typ, flags)
}
// implementation of new builtin
func newobject(typ *_type) unsafe.Pointer {
flags := 0
if typ.kind&kindNoPointers != 0 {
flags |= flagNoScan
}
return gomallocgc(uintptr(typ.size), typ, flags)
}
// implementation of make builtin for slices
func newarray(typ *_type, n uintptr) unsafe.Pointer {
flags := 0
if typ.kind&kindNoPointers != 0 {
flags |= flagNoScan
}
if int(n) < 0 || (typ.size > 0 && n > maxMem/uintptr(typ.size)) {
panic("runtime: allocation size out of range")
}
return gomallocgc(uintptr(typ.size)*n, typ, flags)
}
// rawmem returns a chunk of pointerless memory. It is
// not zeroed.
func rawmem(size uintptr) unsafe.Pointer {
return gomallocgc(size, nil, flagNoScan|flagNoZero)
}
// round size up to next size class
func goroundupsize(size uintptr) uintptr {
if size < maxSmallSize {
if size <= 1024-8 {
return uintptr(class_to_size[size_to_class8[(size+7)>>3]])
}
return uintptr(class_to_size[size_to_class128[(size-1024+127)>>7]])
}
if size+pageSize < size {
return size
}
return (size + pageSize - 1) &^ pageMask
}
func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
c := mp.mcache
rate := MemProfileRate
if size < uintptr(rate) {
// pick next profile time
// If you change this, also change allocmcache.
if rate > 0x3fffffff { // make 2*rate not overflow
rate = 0x3fffffff
}
next := int32(fastrand2()) % (2 * int32(rate))
// Subtract the "remainder" of the current allocation.
// Otherwise objects that are close in size to sampling rate
// will be under-sampled, because we consistently discard this remainder.
next -= (int32(size) - c.next_sample)
if next < 0 {
next = 0
}
c.next_sample = next
}
mp.scalararg[0] = uint(size)
mp.ptrarg[0] = x
onM(&mprofMalloc_m)
}
// force = 1 - do GC regardless of current heap usage
// force = 2 - go GC and eager sweep
func gogc(force int32) {
if memstats.enablegc == 0 {
return
}
// TODO: should never happen? Only C calls malloc while holding a lock?
mp := acquirem()
if mp.locks > 1 {
releasem(mp)
return
}
releasem(mp)
if panicking != 0 {
return
}
if gcpercent == gcpercentUnknown {
golock(&mheap_.lock)
if gcpercent == gcpercentUnknown {
gcpercent = goreadgogc()
}
gounlock(&mheap_.lock)
}
if gcpercent < 0 {
return
}
semacquire(&worldsema, false)
if force == 0 && memstats.heap_alloc < memstats.next_gc {
// typically threads which lost the race to grab
// worldsema exit here when gc is done.
semrelease(&worldsema)
return
}
// Ok, we're doing it! Stop everybody else
startTime := gonanotime()
mp = acquirem()
mp.gcing = 1
stoptheworld()
clearpools()
// Run gc on the g0 stack. We do this so that the g stack
// we're currently running on will no longer change. Cuts
// the root set down a bit (g0 stacks are not scanned, and
// we don't need to scan gc's internal state). We also
// need to switch to g0 so we can shrink the stack.
n := 1
if debug.gctrace > 1 {
n = 2
}
for i := 0; i < n; i++ {
if i > 0 {
startTime = gonanotime()
}
// switch to g0, call gc, then switch back
mp.scalararg[0] = uint(startTime)
if force >= 2 {
mp.scalararg[1] = 1 // eagersweep
} else {
mp.scalararg[1] = 0
}
onM(&gc_m)
}
// all done
mp.gcing = 0
semrelease(&worldsema)
starttheworld()
releasem(mp)
// now that gc is done, kick off finalizer thread if needed
if !concurrentSweep {
// give the queued finalizers, if any, a chance to run
gosched()
}
}
// GC runs a garbage collection.
func GC() {
gogc(2)
}
// SetFinalizer sets the finalizer associated with x to f.
// When the garbage collector finds an unreachable block
// with an associated finalizer, it clears the association and runs
// f(x) in a separate goroutine. This makes x reachable again, but
// now without an associated finalizer. Assuming that SetFinalizer
// is not called again, the next time the garbage collector sees
// that x is unreachable, it will free x.
//
// SetFinalizer(x, nil) clears any finalizer associated with x.
//
// The argument x must be a pointer to an object allocated by
// calling new or by taking the address of a composite literal.
// The argument f must be a function that takes a single argument
// to which x's type can be assigned, and can have arbitrary ignored return
// values. If either of these is not true, SetFinalizer aborts the
// program.
//
// Finalizers are run in dependency order: if A points at B, both have
// finalizers, and they are otherwise unreachable, only the finalizer
// for A runs; once A is freed, the finalizer for B can run.
// If a cyclic structure includes a block with a finalizer, that
// cycle is not guaranteed to be garbage collected and the finalizer
// is not guaranteed to run, because there is no ordering that
// respects the dependencies.
//
// The finalizer for x is scheduled to run at some arbitrary time after
// x becomes unreachable.
// There is no guarantee that finalizers will run before a program exits,
// so typically they are useful only for releasing non-memory resources
// associated with an object during a long-running program.
// For example, an os.File object could use a finalizer to close the
// associated operating system file descriptor when a program discards
// an os.File without calling Close, but it would be a mistake
// to depend on a finalizer to flush an in-memory I/O buffer such as a
// bufio.Writer, because the buffer would not be flushed at program exit.
//
// It is not guaranteed that a finalizer will run if the size of *x is
// zero bytes.
//
// A single goroutine runs all finalizers for a program, sequentially.
// If a finalizer must run for a long time, it should do so by starting
// a new goroutine.
func SetFinalizer(obj interface{}, finalizer interface{}) {
// We do just enough work here to make the mcall type safe.
// The rest is done on the M stack.
e := (*eface)(unsafe.Pointer(&obj))
typ := e._type
if typ == nil {
gothrow("runtime.SetFinalizer: first argument is nil")
}
if typ.kind&kindMask != kindPtr {
gothrow("runtime.SetFinalizer: first argument is " + *typ._string + ", not pointer")
}
f := (*eface)(unsafe.Pointer(&finalizer))
ftyp := f._type
if ftyp != nil && ftyp.kind&kindMask != kindFunc {
gothrow("runtime.SetFinalizer: second argument is " + *ftyp._string + ", not a function")
}
mp := acquirem()
mp.ptrarg[0] = unsafe.Pointer(typ)
mp.ptrarg[1] = e.data
mp.ptrarg[2] = unsafe.Pointer(ftyp)
mp.ptrarg[3] = f.data
onM(&setFinalizer_m)
releasem(mp)
}