1
0
mirror of https://github.com/golang/go synced 2024-11-20 04:54:44 -07:00
go/src/runtime/malloc.h

365 lines
11 KiB
C
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Memory allocator, based on tcmalloc.
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
// The main allocator works in runs of pages.
// Small allocation sizes (up to and including 32 kB) are
// rounded to one of about 100 size classes, each of which
// has its own free list of objects of exactly that size.
// Any free page of memory can be split into a set of objects
// of one size class, which are then managed using free list
// allocators.
//
// The allocator's data structures are:
//
// FixAlloc: a free-list allocator for fixed-size objects,
// used to manage storage used by the allocator.
// MHeap: the malloc heap, managed at page (4096-byte) granularity.
// MSpan: a run of pages managed by the MHeap.
// MHeapMap: a mapping from page IDs to MSpans.
// MHeapMapCache: a small cache of MHeapMap mapping page IDs
// to size classes for pages used for small objects.
// MCentral: a shared free list for a given size class.
// MCache: a per-thread (in Go, per-M) cache for small objects.
// MStats: allocation statistics.
//
// Allocating a small object proceeds up a hierarchy of caches:
//
// 1. Round the size up to one of the small size classes
// and look in the corresponding MCache free list.
// If the list is not empty, allocate an object from it.
// This can all be done without acquiring a lock.
//
// 2. If the MCache free list is empty, replenish it by
// taking a bunch of objects from the MCentral free list.
// Moving a bunch amortizes the cost of acquiring the MCentral lock.
//
// 3. If the MCentral free list is empty, replenish it by
// allocating a run of pages from the MHeap and then
// chopping that memory into a objects of the given size.
// Allocating many objects amortizes the cost of locking
// the heap.
//
// 4. If the MHeap is empty or has no page runs large enough,
// allocate a new group of pages (at least 1MB) from the
// operating system. Allocating a large run of pages
// amortizes the cost of talking to the operating system.
//
// Freeing a small object proceeds up the same hierarchy:
//
// 1. Look up the size class for the object and add it to
// the MCache free list.
//
// 2. If the MCache free list is too long or the MCache has
// too much memory, return some to the MCentral free lists.
//
// 3. If all the objects in a given span have returned to
// the MCentral list, return that span to the page heap.
//
// 4. If the heap has too much memory, return some to the
// operating system.
//
// TODO(rsc): Steps 2, 3, 4 are not implemented.
//
// Allocating and freeing a large object uses the page heap
// directly, bypassing the MCache and MCentral free lists.
//
// This C code was written with an eye toward translating to Go
// in the future. Methods have the form Type_Method(Type *t, ...).
typedef struct FixAlloc FixAlloc;
typedef struct MCentral MCentral;
typedef struct MCache MCache;
typedef struct MHeap MHeap;
typedef struct MHeapMap MHeapMap;
typedef struct MHeapMapCache MHeapMapCache;
typedef struct MSpan MSpan;
typedef struct MStats MStats;
enum
{
PageShift = 12,
PageSize = 1<<PageShift,
PageMask = PageSize - 1,
};
typedef uintptr PageID; // address >> PageShift
enum
{
// Tunable constants.
NumSizeClasses = 133, // Number of size classes (must match msize.c)
MaxSmallSize = 32<<10,
FixAllocChunk = 128<<10, // Chunk size for FixAlloc
MaxMCacheListLen = 256, // Maximum objects on MCacheList
MaxMCacheSize = 2<<20, // Maximum bytes in one MCache
MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
HeapAllocChunk = 1<<20, // Chunk size for heap growth
};
// SysAlloc obtains a large chunk of memory from the operating system,
// typically on the order of a hundred kilobytes or a megabyte.
//
// SysUnused notifies the operating system that the contents
// of the memory region are no longer needed and can be reused
// for other purposes. The program reserves the right to start
// accessing those pages in the future.
//
// SysFree returns it unconditionally; this is only used if
// an out-of-memory error has been detected midway through
// an allocation. It is okay if SysFree is a no-op.
void* SysAlloc(uintptr nbytes);
void SysFree(void *v, uintptr nbytes);
void SysUnused(void *v, uintptr nbytes);
// FixAlloc is a simple free-list allocator for fixed size objects.
// Malloc uses a FixAlloc wrapped around SysAlloc to manages its
// MCache and MSpan objects.
//
// Memory returned by FixAlloc_Alloc is not zeroed.
// The caller is responsible for locking around FixAlloc calls.
struct FixAlloc
{
uintptr size;
void *(*alloc)(uintptr);
void *list;
byte *chunk;
uint32 nchunk;
};
void FixAlloc_Init(FixAlloc *f, uintptr size, void *(*alloc)(uintptr));
void* FixAlloc_Alloc(FixAlloc *f);
void FixAlloc_Free(FixAlloc *f, void *p);
// Statistics.
// Shared with Go: if you edit this structure, also edit ../lib/malloc.go.
typedef struct MStats MStats;
struct MStats
{
uint64 alloc;
uint64 sys;
};
extern MStats mstats;
// Size classes. Computed and initialized by InitSizes.
//
// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
// 1 <= sizeclass < NumSizeClasses, for n.
// Size class 0 is reserved to mean "not small".
//
// class_to_size[i] = largest size in class i
// class_to_allocnpages[i] = number of pages to allocate when
// making new objects in class i
// class_to_transfercount[i] = number of objects to move when
// taking a bunch of objects out of the central lists
// and putting them in the thread free list.
int32 SizeToClass(int32);
extern int32 class_to_size[NumSizeClasses];
extern int32 class_to_allocnpages[NumSizeClasses];
extern int32 class_to_transfercount[NumSizeClasses];
extern void InitSizes(void);
// Per-thread (in Go, per-M) cache for small objects.
// No locking needed because it is per-thread (per-M).
typedef struct MCacheList MCacheList;
struct MCacheList
{
void *list;
uint32 nlist;
};
struct MCache
{
MCacheList list[NumSizeClasses];
uint64 size;
};
void* MCache_Alloc(MCache *c, int32 sizeclass, uintptr size);
void MCache_Free(MCache *c, void *p, int32 sizeclass, uintptr size);
// An MSpan is a run of pages.
enum
{
MSpanInUse = 0,
MSpanFree
};
struct MSpan
{
MSpan *next; // in a span linked list
MSpan *prev; // in a span linked list
PageID start; // starting page number
uintptr npages; // number of pages in span
void *freelist; // list of free objects
uint32 ref; // number of allocated objects in this span
uint32 sizeclass; // size class
uint32 state; // MSpanInUse or MSpanFree
};
void MSpan_Init(MSpan *span, PageID start, uintptr npages);
// Every MSpan is in one doubly-linked list,
// either one of the MHeap's free lists or one of the
// MCentral's span lists. We use empty MSpan structures as list heads.
void MSpanList_Init(MSpan *list);
bool MSpanList_IsEmpty(MSpan *list);
void MSpanList_Insert(MSpan *list, MSpan *span);
void MSpanList_Remove(MSpan *span); // from whatever list it is in
// Central list of free objects of a given size.
typedef struct MCentral MCentral;
struct MCentral
{
Lock;
int32 sizeclass;
MSpan nonempty;
MSpan empty;
int32 nfree;
};
void MCentral_Init(MCentral *c, int32 sizeclass);
int32 MCentral_AllocList(MCentral *c, int32 n, void **start, void **end);
void MCentral_FreeList(MCentral *c, int32 n, void *start, void *end);
// Free(v) must be able to determine the MSpan containing v.
// The MHeapMap is a 3-level radix tree mapping page numbers to MSpans.
//
// NOTE(rsc): On a 32-bit platform (= 20-bit page numbers),
// we can swap in a 2-level radix tree.
//
// NOTE(rsc): We use a 3-level tree because tcmalloc does, but
// having only three levels requires approximately 1 MB per node
// in the tree, making the minimum map footprint 3 MB.
// Using a 4-level tree would cut the minimum footprint to 256 kB.
// On the other hand, it's just virtual address space: most of
// the memory is never going to be touched, thus never paged in.
typedef struct MHeapMap MHeapMap;
typedef struct MHeapMapNode2 MHeapMapNode2;
typedef struct MHeapMapNode3 MHeapMapNode3;
enum
{
// 64 bit address - 12 bit page size = 52 bits to map
MHeapMap_Level1Bits = 18,
MHeapMap_Level2Bits = 18,
MHeapMap_Level3Bits = 16,
MHeapMap_TotalBits =
MHeapMap_Level1Bits +
MHeapMap_Level2Bits +
MHeapMap_Level3Bits,
MHeapMap_Level1Mask = (1<<MHeapMap_Level1Bits) - 1,
MHeapMap_Level2Mask = (1<<MHeapMap_Level2Bits) - 1,
MHeapMap_Level3Mask = (1<<MHeapMap_Level3Bits) - 1,
};
struct MHeapMap
{
void *(*allocator)(uintptr);
MHeapMapNode2 *p[1<<MHeapMap_Level1Bits];
};
struct MHeapMapNode2
{
MHeapMapNode3 *p[1<<MHeapMap_Level2Bits];
};
struct MHeapMapNode3
{
MSpan *s[1<<MHeapMap_Level3Bits];
};
void MHeapMap_Init(MHeapMap *m, void *(*allocator)(uintptr));
bool MHeapMap_Preallocate(MHeapMap *m, PageID k, uintptr npages);
MSpan* MHeapMap_Get(MHeapMap *m, PageID k);
void MHeapMap_Set(MHeapMap *m, PageID k, MSpan *v);
// Much of the time, free(v) needs to know only the size class for v,
// not which span it came from. The MHeapMap finds the size class
// by looking up the span.
//
// An MHeapMapCache is a simple direct-mapped cache translating
// page numbers to size classes. It avoids the expensive MHeapMap
// lookup for hot pages.
//
// The cache entries are 64 bits, with the page number in the low part
// and the value at the top.
//
// NOTE(rsc): On a machine with 32-bit addresses (= 20-bit page numbers),
// we can use a 16-bit cache entry by not storing the redundant 12 bits
// of the key that are used as the entry index. Here in 64-bit land,
// that trick won't work unless the hash table has 2^28 entries.
enum
{
MHeapMapCache_HashBits = 12
};
typedef struct MHeapMapCache MHeapMapCache;
struct MHeapMapCache
{
uintptr array[1<<MHeapMapCache_HashBits];
};
// All macros for speed (sorry).
#define HMASK ((1<<MHeapMapCache_HashBits)-1)
#define KBITS MHeapMap_TotalBits
#define KMASK ((1LL<<KBITS)-1)
#define MHeapMapCache_SET(cache, key, value) \
((cache)->array[(key) & HMASK] = (key) | ((uintptr)(value) << KBITS))
#define MHeapMapCache_GET(cache, key, tmp) \
(tmp = (cache)->array[(key) & HMASK], \
(tmp & KMASK) == (key) ? (tmp >> KBITS) : 0)
// Main malloc heap.
// The heap itself is the "free[]" and "large" arrays,
// but all the other global data is here too.
typedef struct MHeap MHeap;
struct MHeap
{
Lock;
MSpan free[MaxMHeapList]; // free lists of given length
MSpan large; // free lists length >= MaxMHeapList
// span lookup
MHeapMap map;
MHeapMapCache mapcache;
// central free lists for small size classes.
// the union makes sure that the MCentrals are
// spaced 64 bytes apart, so that each MCentral.Lock
// gets its own cache line.
union {
MCentral;
byte pad[64];
} central[NumSizeClasses];
FixAlloc spanalloc; // allocator for Span*
FixAlloc cachealloc; // allocator for MCache*
};
extern MHeap mheap;
void MHeap_Init(MHeap *h, void *(*allocator)(uintptr));
MSpan* MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass);
void MHeap_Free(MHeap *h, MSpan *s);
MSpan* MHeap_Lookup(MHeap *h, PageID p);