1
0
mirror of https://github.com/golang/go synced 2024-10-04 06:11:21 -06:00
go/usr/gri/bignum/bignum.go

536 lines
9.2 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package Bignum
// A package for arbitrary precision arithmethic.
// It implements the following numeric types:
//
// - Natural unsigned integer numbers
// - Integer signed integer numbers
// - Rational rational numbers
// - Number scaled rational numbers (contain exponent)
// ----------------------------------------------------------------------------
// Support
type Word uint32
const N = 4;
const L = 28; // = sizeof(Word) * 8
const B = 1 << L;
const M = B - 1;
// TODO replace this with a Go built-in assert
func ASSERT(p bool) {
if !p {
panic("ASSERT failed");
}
}
func IsSmall(x Word) bool {
return x < 1 << N;
}
func Update(x Word) (Word, Word) {
return x & M, x >> L;
}
// ----------------------------------------------------------------------------
// Naturals
export type Natural []Word;
export var NatZero *Natural = new(Natural, 0);
func (x *Natural) IsZero() bool {
return len(x) == 0;
}
func (x *Natural) Add (y *Natural) *Natural {
xl := len(x);
yl := len(y);
if xl < yl {
return y.Add(x);
}
ASSERT(xl >= yl);
z := new(Natural, xl + 1);
i := 0;
c := Word(0);
for i < yl { z[i], c = Update(x[i] + y[i] + c); i++; }
for i < xl { z[i], c = Update(x[i] + c); i++; }
if c != 0 { z[i] = c; i++; }
z = z[0 : i];
return z;
}
func (x *Natural) Sub (y *Natural) *Natural {
xl := len(x);
yl := len(y);
ASSERT(xl >= yl);
z := new(Natural, xl);
i := 0;
c := Word(0);
for i < yl { z[i], c = Update(x[i] - y[i] + c); i++; }
for i < xl { z[i], c = Update(x[i] + c); i++; }
ASSERT(c == 0); // usub(x, y) must be called with x >= y
for i > 0 && z[i - 1] == 0 { i--; }
z = z[0 : i];
return z;
}
// Computes x = x*a + c (in place) for "small" a's.
func (x* Natural) Mul1Add(a, c Word) *Natural {
ASSERT(IsSmall(a) && IsSmall(c));
if (x.IsZero() || a == 0) && c == 0 {
return NatZero;
}
xl := len(x);
z := new(Natural, xl + 1);
i := 0;
for i < xl { z[i], c = Update(x[i] * a + c); i++; }
if c != 0 { z[i] = c; i++; }
z = z[0 : i];
return z;
}
// Returns z = (x * y) div B, c = (x * y) mod B.
func Mul1(x, y Word) (z Word, c Word) {
const L2 = (L + 1) >> 1;
const B2 = 1 << L2;
const M2 = B2 - 1;
x0 := x & M2;
x1 := x >> L2;
y0 := y & M2;
y1 := y >> L2;
z10 := x0*y0;
z21 := x1*y0 + x0*y1 + z10 >> L2;
cc := x1*y1 + z21 >> L2;
zz := z21 & M2 << L2 | z10 & M2;
return zz, cc
}
func (x *Natural) Mul (y *Natural) *Natural {
if x.IsZero() || y.IsZero() {
return NatZero;
}
xl := len(x);
yl := len(y);
if xl < yl {
return y.Mul(x); // for speed
}
ASSERT(xl >= yl && yl > 0);
// initialize z
zl := xl + yl;
z := new(Natural, zl);
k := 0;
for j := 0; j < yl; j++ {
d := y[j];
if d != 0 {
k = j;
c := Word(0);
for i := 0; i < xl; i++ {
// compute z[k] += x[i] * d + c;
t := z[k] + c;
var z1 Word;
z1, c = Mul1(x[i], d);
t += z1;
z[k] = t & M;
c += t >> L;
k++;
}
if c != 0 {
z[k] = c;
k++;
}
}
}
z = z[0 : k];
return z;
}
func (x *Natural) Div (y *Natural) *Natural {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Natural) Mod (y *Natural) *Natural {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Natural) Cmp (y *Natural) int {
xl := len(x);
yl := len(y);
if xl != yl || xl == 0 {
return xl - yl;
}
i := xl - 1;
for i > 0 && x[i] == y[i] { i--; }
d := 0;
switch {
case x[i] < y[i]: d = -1;
case x[i] > y[i]: d = 1;
}
return d;
}
func (x *Natural) Log() int {
xl := len(x);
if xl == 0 { return 0; }
n := (xl - 1) * L;
for t := x[xl - 1]; t != 0; t >>= 1 { n++ };
return n;
}
func (x *Natural) And (y *Natural) *Natural {
xl := len(x);
yl := len(y);
if xl < yl {
return y.And(x);
}
ASSERT(xl >= yl);
z := new(Natural, xl);
i := 0;
for i < yl { z[i] = x[i] & y[i]; i++; }
for i < xl { z[i] = x[i]; i++; }
for i > 0 && z[i - 1] == 0 { i--; }
z = z[0 : i];
return z;
}
func (x *Natural) Or (y *Natural) *Natural {
xl := len(x);
yl := len(y);
if xl < yl {
return y.Or(x);
}
ASSERT(xl >= yl);
z := new(Natural, xl);
i := 0;
for i < yl { z[i] = x[i] | y[i]; i++; }
for i < xl { z[i] = x[i]; i++; }
return z;
}
func (x *Natural) Xor (y *Natural) *Natural {
xl := len(x);
yl := len(y);
if xl < yl {
return y.Xor(x);
}
ASSERT(xl >= yl);
z := new(Natural, xl);
i := 0;
for i < yl { z[i] = x[i] ^ y[i]; i++; }
for i < xl { z[i] = x[i]; i++; }
for i > 0 && z[i - 1] == 0 { i--; }
z = z[0 : i];
return z;
}
// Returns a copy of x with space for one extra digit (for Div/Mod use)
func Copy(x *Natural) *Natural {
xl := len(x);
z := new(Natural, xl + 1); // add space for one extra digit
for i := 0; i < xl; i++ { z[i] = x[i]; }
z = z[0 : xl];
return z;
}
// Computes x = x div d (in place) for "small" d's. Returns updated x, x mod d.
func (x *Natural) Mod1 (d Word) (*Natural, Word) {
ASSERT(IsSmall(d));
xl := len(x);
c := Word(0);
for i := xl - 1; i >= 0; i-- {
c = c << L + x[i];
x[i], c = c / d, c %d;
}
if xl > 0 && x[xl - 1] == 0 {
x = x[0 : xl - 1];
}
return x, c;
}
func (x *Natural) String() string {
if x.IsZero() {
return "0";
}
// allocate string
// approx. length: 1 char for 3 bits
n := x.Log()/3 + 1; // +1 (round up)
s := new([]byte, n);
// convert
i := n;
x = Copy(x); // don't destroy recv
for !x.IsZero() {
i--;
var d Word;
x, d = x.Mod1(10);
s[i] = byte(d) + '0';
};
return string(s[i : n]);
}
export func NatFromWord(x Word) *Natural {
var z *Natural;
switch {
case x == 0:
z = NatZero;
case x < B:
z = new(Natural, 1);
z[0] = x;
return z;
default:
z = new(Natural, 2);
z[0], z[1] = Update(x);
}
return z;
}
// Support function for faster factorial computation.
func MulRange(a, b Word) *Natural {
switch {
case a > b: return NatFromWord(1);
case a == b: return NatFromWord(a);
case a + 1 == b: return NatFromWord(a).Mul(NatFromWord(b));
}
m := (a + b) >> 1;
ASSERT(a <= m && m < b);
return MulRange(a, m).Mul(MulRange(m + 1, b));
}
export func Fact(n Word) *Natural {
return MulRange(2, n);
}
export func NatFromString(s string) *Natural {
x := NatZero;
for i := 0; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ {
x = x.Mul1Add(10, Word(s[i] - '0'));
}
return x;
}
// ----------------------------------------------------------------------------
// Integers
export type Integer struct {
sign bool;
mant *Natural;
}
func (x *Integer) Add (y *Integer) *Integer {
var z *Integer;
if x.sign == y.sign {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z = &Integer{x.sign, x.mant.Add(y.mant)};
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.mant.Cmp(y.mant) >= 0 {
z = &Integer{false, x.mant.Sub(y.mant)};
} else {
z = &Integer{true, y.mant.Sub(x.mant)};
}
}
if x.sign {
z.sign = !z.sign;
}
return z;
}
func (x *Integer) Sub (y *Integer) *Integer {
var z *Integer;
if x.sign != y.sign {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z = &Integer{x.sign, x.mant.Add(y.mant)};
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.mant.Cmp(y.mant) >= 0 {
z = &Integer{false, x.mant.Sub(y.mant)};
} else {
z = &Integer{true, y.mant.Sub(x.mant)};
}
}
if x.sign {
z.sign = !z.sign;
}
return z;
}
func (x *Integer) Mul (y *Integer) *Integer {
// x * y == x * y
// x * (-y) == -(x * y)
// (-x) * y == -(x * y)
// (-x) * (-y) == x * y
return &Integer{x.sign != y.sign, x.mant.Mul(y.mant)};
}
func (x *Integer) Div (y *Integer) *Integer {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Integer) Mod (y *Integer) *Integer {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Integer) Cmp (y *Integer) int {
panic("UNIMPLEMENTED");
return 0;
}
func (x *Integer) String() string {
if x.mant.IsZero() {
return "0";
}
var s string;
if x.sign {
s = "-" + x.mant.String();
} else {
s = x.mant.String();
}
return s;
}
export func IntFromString(s string) *Integer {
// get sign, if any
sign := false;
if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
sign = s[0] == '-';
}
return &Integer{sign, NatFromString(s[1 : len(s)])};
}
// ----------------------------------------------------------------------------
// Rationals
export type Rational struct {
a, b *Integer; // a = numerator, b = denominator
}
func NewRat(a, b *Integer) *Rational {
// TODO normalize the rational
return &Rational{a, b};
}
func (x *Rational) Add (y *Rational) *Rational {
return NewRat((x.a.Mul(y.b)).Add(x.b.Mul(y.a)), x.b.Mul(y.b));
}
func (x *Rational) Sub (y *Rational) *Rational {
return NewRat((x.a.Mul(y.b)).Sub(x.b.Mul(y.a)), x.b.Mul(y.b));
}
func (x *Rational) Mul (y *Rational) *Rational {
return NewRat(x.a.Mul(y.a), x.b.Mul(y.b));
}
func (x *Rational) Div (y *Rational) *Rational {
return NewRat(x.a.Mul(y.b), x.b.Mul(y.a));
}
func (x *Rational) Mod (y *Rational) *Rational {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Rational) Cmp (y *Rational) int {
panic("UNIMPLEMENTED");
return 0;
}
export func RatFromString(s string) *Rational {
panic("UNIMPLEMENTED");
return nil;
}
// ----------------------------------------------------------------------------
// Numbers
export type Number struct {
mant *Rational;
exp Integer;
}