1
0
mirror of https://github.com/golang/go synced 2024-11-20 02:54:39 -07:00
go/src/runtime/stack_test.go

449 lines
9.2 KiB
Go
Raw Normal View History

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
. "runtime"
"strings"
"sync"
"testing"
"time"
)
// TestStackMem measures per-thread stack segment cache behavior.
// The test consumed up to 500MB in the past.
func TestStackMem(t *testing.T) {
const (
BatchSize = 32
BatchCount = 256
ArraySize = 1024
RecursionDepth = 128
)
if testing.Short() {
return
}
defer GOMAXPROCS(GOMAXPROCS(BatchSize))
s0 := new(MemStats)
ReadMemStats(s0)
for b := 0; b < BatchCount; b++ {
c := make(chan bool, BatchSize)
for i := 0; i < BatchSize; i++ {
go func() {
var f func(k int, a [ArraySize]byte)
f = func(k int, a [ArraySize]byte) {
if k == 0 {
time.Sleep(time.Millisecond)
return
}
f(k-1, a)
}
f(RecursionDepth, [ArraySize]byte{})
c <- true
}()
}
for i := 0; i < BatchSize; i++ {
<-c
}
// The goroutines have signaled via c that they are ready to exit.
// Give them a chance to exit by sleeping. If we don't wait, we
// might not reuse them on the next batch.
time.Sleep(10 * time.Millisecond)
}
s1 := new(MemStats)
ReadMemStats(s1)
consumed := int64(s1.StackSys - s0.StackSys)
t.Logf("Consumed %vMB for stack mem", consumed>>20)
estimate := int64(8 * BatchSize * ArraySize * RecursionDepth) // 8 is to reduce flakiness.
if consumed > estimate {
t.Fatalf("Stack mem: want %v, got %v", estimate, consumed)
}
// Due to broken stack memory accounting (http://golang.org/issue/7468),
// StackInuse can decrease during function execution, so we cast the values to int64.
inuse := int64(s1.StackInuse) - int64(s0.StackInuse)
t.Logf("Inuse %vMB for stack mem", inuse>>20)
if inuse > 4<<20 {
t.Fatalf("Stack inuse: want %v, got %v", 4<<20, inuse)
}
}
// Test stack growing in different contexts.
func TestStackGrowth(t *testing.T) {
t.Parallel()
var wg sync.WaitGroup
// in a normal goroutine
wg.Add(1)
go func() {
defer wg.Done()
growStack()
}()
wg.Wait()
// in locked goroutine
wg.Add(1)
go func() {
defer wg.Done()
LockOSThread()
growStack()
UnlockOSThread()
}()
wg.Wait()
// in finalizer
wg.Add(1)
go func() {
defer wg.Done()
done := make(chan bool)
go func() {
s := new(string)
SetFinalizer(s, func(ss *string) {
growStack()
done <- true
})
s = nil
done <- true
}()
<-done
GC()
select {
case <-done:
case <-time.After(20 * time.Second):
t.Fatal("finalizer did not run")
}
}()
wg.Wait()
}
// ... and in init
//func init() {
// growStack()
//}
func growStack() {
n := 1 << 10
if testing.Short() {
n = 1 << 8
}
for i := 0; i < n; i++ {
x := 0
growStackIter(&x, i)
if x != i+1 {
panic("stack is corrupted")
}
}
GC()
}
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
// This function is not an anonymous func, so that the compiler can do escape
// analysis and place x on stack (and subsequently stack growth update the pointer).
func growStackIter(p *int, n int) {
if n == 0 {
*p = n + 1
GC()
return
}
*p = n + 1
x := 0
growStackIter(&x, n-1)
if x != n {
panic("stack is corrupted")
}
}
func TestStackGrowthCallback(t *testing.T) {
t.Parallel()
var wg sync.WaitGroup
// test stack growth at chan op
wg.Add(1)
go func() {
defer wg.Done()
c := make(chan int, 1)
growStackWithCallback(func() {
c <- 1
<-c
})
}()
// test stack growth at map op
wg.Add(1)
go func() {
defer wg.Done()
m := make(map[int]int)
growStackWithCallback(func() {
_, _ = m[1]
m[1] = 1
})
}()
// test stack growth at goroutine creation
wg.Add(1)
go func() {
defer wg.Done()
growStackWithCallback(func() {
done := make(chan bool)
go func() {
done <- true
}()
<-done
})
}()
wg.Wait()
}
func growStackWithCallback(cb func()) {
var f func(n int)
f = func(n int) {
if n == 0 {
cb()
return
}
f(n - 1)
}
for i := 0; i < 1<<10; i++ {
f(i)
}
}
// TestDeferPtrs tests the adjustment of Defer's argument pointers (p aka &y)
// during a stack copy.
func set(p *int, x int) {
*p = x
}
func TestDeferPtrs(t *testing.T) {
var y int
defer func() {
if y != 42 {
t.Errorf("defer's stack references were not adjusted appropriately")
}
}()
defer set(&y, 42)
growStack()
}
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
type bigBuf [4 * 1024]byte
// TestDeferPtrsGoexit is like TestDeferPtrs but exercises the possibility that the
// stack grows as part of starting the deferred function. It calls Goexit at various
// stack depths, forcing the deferred function (with >4kB of args) to be run at
// the bottom of the stack. The goal is to find a stack depth less than 4kB from
// the end of the stack. Each trial runs in a different goroutine so that an earlier
// stack growth does not invalidate a later attempt.
func TestDeferPtrsGoexit(t *testing.T) {
for i := 0; i < 100; i++ {
c := make(chan int, 1)
go testDeferPtrsGoexit(c, i)
if n := <-c; n != 42 {
t.Fatalf("defer's stack references were not adjusted appropriately (i=%d n=%d)", i, n)
}
}
}
func testDeferPtrsGoexit(c chan int, i int) {
var y int
defer func() {
c <- y
}()
defer setBig(&y, 42, bigBuf{})
useStackAndCall(i, Goexit)
}
func setBig(p *int, x int, b bigBuf) {
*p = x
}
// TestDeferPtrsPanic is like TestDeferPtrsGoexit, but it's using panic instead
// of Goexit to run the Defers. Those two are different execution paths
// in the runtime.
func TestDeferPtrsPanic(t *testing.T) {
for i := 0; i < 100; i++ {
c := make(chan int, 1)
go testDeferPtrsGoexit(c, i)
if n := <-c; n != 42 {
t.Fatalf("defer's stack references were not adjusted appropriately (i=%d n=%d)", i, n)
}
}
}
func testDeferPtrsPanic(c chan int, i int) {
var y int
defer func() {
if recover() == nil {
c <- -1
return
}
c <- y
}()
defer setBig(&y, 42, bigBuf{})
useStackAndCall(i, func() { panic(1) })
}
// TestPanicUseStack checks that a chain of Panic structs on the stack are
// updated correctly if the stack grows during the deferred execution that
// happens as a result of the panic.
func TestPanicUseStack(t *testing.T) {
pc := make([]uintptr, 10000)
defer func() {
recover()
Callers(0, pc) // force stack walk
useStackAndCall(100, func() {
defer func() {
recover()
Callers(0, pc) // force stack walk
useStackAndCall(200, func() {
defer func() {
recover()
Callers(0, pc) // force stack walk
}()
panic(3)
})
}()
panic(2)
})
}()
panic(1)
}
runtime: implement GC stack barriers This commit implements stack barriers to minimize the amount of stack re-scanning that must be done during mark termination. Currently the GC scans stacks of active goroutines twice during every GC cycle: once at the beginning during root discovery and once at the end during mark termination. The second scan happens while the world is stopped and guarantees that we've seen all of the roots (since there are no write barriers on writes to local stack variables). However, this means pause time is proportional to stack size. In particularly recursive programs, this can drive pause time up past our 10ms goal (e.g., it takes about 150ms to scan a 50MB heap). Re-scanning the entire stack is rarely necessary, especially for large stacks, because usually most of the frames on the stack were not active between the first and second scans and hence any changes to these frames (via non-escaping pointers passed down the stack) were tracked by write barriers. To efficiently track how far a stack has been unwound since the first scan (and, hence, how much needs to be re-scanned), this commit introduces stack barriers. During the first scan, at exponentially spaced points in each stack, the scan overwrites return PCs with the PC of the stack barrier function. When "returned" to, the stack barrier function records how far the stack has unwound and jumps to the original return PC for that point in the stack. Then the second scan only needs to proceed as far as the lowest barrier that hasn't been hit. For deeply recursive programs, this substantially reduces mark termination time (and hence pause time). For the goscheme example linked in issue #10898, prior to this change, mark termination times were typically between 100 and 500ms; with this change, mark termination times are typically between 10 and 20ms. As a result of the reduced stack scanning work, this reduces overall execution time of the goscheme example by 20%. Fixes #10898. The effect of this on programs that are not deeply recursive is minimal: name old time/op new time/op delta BinaryTree17 3.16s ± 2% 3.26s ± 1% +3.31% (p=0.000 n=19+19) Fannkuch11 2.42s ± 1% 2.48s ± 1% +2.24% (p=0.000 n=17+19) FmtFprintfEmpty 50.0ns ± 3% 49.8ns ± 1% ~ (p=0.534 n=20+19) FmtFprintfString 173ns ± 0% 175ns ± 0% +1.49% (p=0.000 n=16+19) FmtFprintfInt 170ns ± 1% 175ns ± 1% +2.97% (p=0.000 n=20+19) FmtFprintfIntInt 288ns ± 0% 295ns ± 0% +2.73% (p=0.000 n=16+19) FmtFprintfPrefixedInt 242ns ± 1% 252ns ± 1% +4.13% (p=0.000 n=18+18) FmtFprintfFloat 324ns ± 0% 323ns ± 0% -0.36% (p=0.000 n=20+19) FmtManyArgs 1.14µs ± 0% 1.12µs ± 1% -1.01% (p=0.000 n=18+19) GobDecode 8.88ms ± 1% 8.87ms ± 0% ~ (p=0.480 n=19+18) GobEncode 6.80ms ± 1% 6.85ms ± 0% +0.82% (p=0.000 n=20+18) Gzip 363ms ± 1% 363ms ± 1% ~ (p=0.077 n=18+20) Gunzip 90.6ms ± 0% 90.0ms ± 1% -0.71% (p=0.000 n=17+18) HTTPClientServer 51.5µs ± 1% 50.8µs ± 1% -1.32% (p=0.000 n=18+18) JSONEncode 17.0ms ± 0% 17.1ms ± 0% +0.40% (p=0.000 n=18+17) JSONDecode 61.8ms ± 0% 63.8ms ± 1% +3.11% (p=0.000 n=18+17) Mandelbrot200 3.84ms ± 0% 3.84ms ± 1% ~ (p=0.583 n=19+19) GoParse 3.71ms ± 1% 3.72ms ± 1% ~ (p=0.159 n=18+19) RegexpMatchEasy0_32 100ns ± 0% 100ns ± 1% -0.19% (p=0.033 n=17+19) RegexpMatchEasy0_1K 342ns ± 1% 331ns ± 0% -3.41% (p=0.000 n=19+19) RegexpMatchEasy1_32 82.5ns ± 0% 81.7ns ± 0% -0.98% (p=0.000 n=18+18) RegexpMatchEasy1_1K 505ns ± 0% 494ns ± 1% -2.16% (p=0.000 n=18+18) RegexpMatchMedium_32 137ns ± 1% 137ns ± 1% -0.24% (p=0.048 n=20+18) RegexpMatchMedium_1K 41.6µs ± 0% 41.3µs ± 1% -0.57% (p=0.004 n=18+20) RegexpMatchHard_32 2.11µs ± 0% 2.11µs ± 1% +0.20% (p=0.037 n=17+19) RegexpMatchHard_1K 63.9µs ± 2% 63.3µs ± 0% -0.99% (p=0.000 n=20+17) Revcomp 560ms ± 1% 522ms ± 0% -6.87% (p=0.000 n=18+16) Template 75.0ms ± 0% 75.1ms ± 1% +0.18% (p=0.013 n=18+19) TimeParse 358ns ± 1% 364ns ± 0% +1.74% (p=0.000 n=20+15) TimeFormat 360ns ± 0% 372ns ± 0% +3.55% (p=0.000 n=20+18) Change-Id: If8a9bfae6c128d15a4f405e02bcfa50129df82a2 Reviewed-on: https://go-review.googlesource.com/10314 Reviewed-by: Russ Cox <rsc@golang.org> Run-TryBot: Austin Clements <austin@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-05-20 14:30:49 -06:00
func TestPanicFar(t *testing.T) {
var xtree *xtreeNode
pc := make([]uintptr, 10000)
defer func() {
// At this point we created a large stack and unwound
// it via recovery. Force a stack walk, which will
// check the consistency of stack barriers.
Callers(0, pc)
}()
defer func() {
recover()
}()
useStackAndCall(100, func() {
// Kick off the GC and make it do something nontrivial
// to keep stack barriers installed for a while.
xtree = makeTree(18)
// Give the GC time to install stack barriers.
time.Sleep(time.Millisecond)
panic(1)
})
}
type xtreeNode struct {
l, r *xtreeNode
}
func makeTree(d int) *xtreeNode {
if d == 0 {
return new(xtreeNode)
}
return &xtreeNode{makeTree(d - 1), makeTree(d - 1)}
}
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
// use about n KB of stack and call f
func useStackAndCall(n int, f func()) {
if n == 0 {
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
f()
return
}
var b [1024]byte // makes frame about 1KB
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
useStackAndCall(n-1+int(b[99]), f)
}
func useStack(n int) {
useStackAndCall(n, func() {})
}
func growing(c chan int, done chan struct{}) {
for n := range c {
useStack(n)
done <- struct{}{}
}
done <- struct{}{}
}
func TestStackCache(t *testing.T) {
// Allocate a bunch of goroutines and grow their stacks.
// Repeat a few times to test the stack cache.
const (
R = 4
G = 200
S = 5
)
for i := 0; i < R; i++ {
var reqchans [G]chan int
done := make(chan struct{})
for j := 0; j < G; j++ {
reqchans[j] = make(chan int)
go growing(reqchans[j], done)
}
for s := 0; s < S; s++ {
for j := 0; j < G; j++ {
reqchans[j] <- 1 << uint(s)
}
for j := 0; j < G; j++ {
<-done
}
}
for j := 0; j < G; j++ {
close(reqchans[j])
}
for j := 0; j < G; j++ {
<-done
}
}
}
func TestStackOutput(t *testing.T) {
b := make([]byte, 1024)
stk := string(b[:Stack(b, false)])
if !strings.HasPrefix(stk, "goroutine ") {
t.Errorf("Stack (len %d):\n%s", len(stk), stk)
t.Errorf("Stack output should begin with \"goroutine \"")
}
}
func TestStackAllOutput(t *testing.T) {
b := make([]byte, 1024)
stk := string(b[:Stack(b, true)])
if !strings.HasPrefix(stk, "goroutine ") {
t.Errorf("Stack (len %d):\n%s", len(stk), stk)
t.Errorf("Stack output should begin with \"goroutine \"")
}
}
func TestStackPanic(t *testing.T) {
// Test that stack copying copies panics correctly. This is difficult
// to test because it is very unlikely that the stack will be copied
// in the middle of gopanic. But it can happen.
// To make this test effective, edit panic.go:gopanic and uncomment
// the GC() call just before freedefer(d).
defer func() {
if x := recover(); x == nil {
t.Errorf("recover failed")
}
}()
useStack(32)
panic("test panic")
}
func BenchmarkStackCopy(b *testing.B) {
c := make(chan bool)
for i := 0; i < b.N; i++ {
go func() {
count(1000000)
c <- true
}()
<-c
}
}
func count(n int) int {
if n == 0 {
return 0
}
return 1 + count(n-1)
}