1
0
mirror of https://github.com/golang/go synced 2024-11-19 05:14:50 -07:00
go/pointer/analysis.go

314 lines
9.3 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pointer
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
// This file defines the main datatypes and Analyze function of the pointer analysis.
import (
"fmt"
"go/token"
"io"
"os"
"code.google.com/p/go.tools/go/types"
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
"code.google.com/p/go.tools/go/types/typemap"
"code.google.com/p/go.tools/ssa"
)
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
// object.flags bitmask values.
const (
otTagged = 1 << iota // type-tagged object
otIndirect // type-tagged object with indirect payload
otFunction // function object
)
// An object represents a contiguous block of memory to which some
// (generalized) pointer may point.
//
// (Note: most variables called 'obj' are not *objects but nodeids
// such that a.nodes[obj].obj != nil.)
//
type object struct {
// flags is a bitset of the node type (ot*) flags defined above.
flags uint32
// Number of following nodes belonging to the same "object"
// allocation. Zero for all other nodes.
size uint32
// The SSA operation that caused this object to be allocated.
// May be nil for (e.g.) intrinsic allocations.
val ssa.Value
// The call-graph node (=context) in which this object was allocated.
// May be nil for global objects: Global, Const, some Functions.
cgn *cgnode
// If this is an rtype instance object, or a *rtype-tagged
// object, this is its type.
rtype types.Type
}
// nodeid denotes a node.
// It is an index within analysis.nodes.
// We use small integers, not *node pointers, for many reasons:
// - they are smaller on 64-bit systems.
// - sets of them can be represented compactly in bitvectors or BDDs.
// - order matters; a field offset can be computed by simple addition.
type nodeid uint32
// A node is an equivalence class of memory locations.
// Nodes may be pointers, pointed-to locations, neither, or both.
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
//
// Nodes that are pointed-to locations ("labels") have an enclosing
// object (see analysis.enclosingObject).
//
type node struct {
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
// If non-nil, this node is the start of an object
// (addressable memory location).
// The following obj.size words implicitly belong to the object;
// they locate their object by scanning back.
obj *object
// The type of the field denoted by this node. Non-aggregate,
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
// unless this is an tagged.T node (i.e. the thing
// pointed to by an interface) in which case typ is that type.
typ types.Type
// subelement indicates which directly embedded subelement of
// an object of aggregate type (struct, tuple, array) this is.
subelement *fieldInfo // e.g. ".a.b[*].c"
// Points-to sets.
pts nodeset // points-to set of this node
prevPts nodeset // pts(n) in previous iteration (for difference propagation)
// Graph edges
copyTo nodeset // simple copy constraint edges
// Complex constraints attached to this node (x).
// - *loadConstraint y=*x
// - *offsetAddrConstraint y=&x.f or y=&x[0]
// - *storeConstraint *x=z
// - *typeAssertConstraint y=x.(T)
// - *invokeConstraint y=x.f(params...)
complex constraintset
}
type constraint interface {
String() string
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
// For a complex constraint, returns the nodeid of the pointer
// to which it is attached.
ptr() nodeid
// solve is called for complex constraints when the pts for
// the node to which they are attached has changed.
solve(a *analysis, n *node, delta nodeset)
}
// dst = &src
// pts(dst) ⊇ {src}
// A base constraint used to initialize the solver's pt sets
type addrConstraint struct {
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
dst nodeid // (ptr)
src nodeid
}
// dst = src
// A simple constraint represented directly as a copyTo graph edge.
type copyConstraint struct {
dst nodeid
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
src nodeid // (ptr)
}
// dst = src[offset]
// A complex constraint attached to src (the pointer)
type loadConstraint struct {
offset uint32
dst nodeid
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
src nodeid // (ptr)
}
// dst[offset] = src
// A complex constraint attached to dst (the pointer)
type storeConstraint struct {
offset uint32
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
dst nodeid // (ptr)
src nodeid
}
// dst = &src.f or dst = &src[0]
// A complex constraint attached to dst (the pointer)
type offsetAddrConstraint struct {
offset uint32
dst nodeid
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
src nodeid // (ptr)
}
// dst = src.(typ)
// A complex constraint attached to src (the interface).
type typeAssertConstraint struct {
typ types.Type
dst nodeid
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
src nodeid // (ptr)
}
// src.method(params...)
// A complex constraint attached to iface.
type invokeConstraint struct {
method *types.Func // the abstract method
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
iface nodeid // (ptr) the interface
params nodeid // the first parameter in the params/results block
}
// An analysis instance holds the state of a single pointer analysis problem.
type analysis struct {
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
config *Config // the client's control/observer interface
prog *ssa.Program // the program being analyzed
log io.Writer // log stream; nil to disable
panicNode nodeid // sink for panic, source for recover
nodes []*node // indexed by nodeid
flattenMemo map[types.Type][]*fieldInfo // memoization of flatten()
constraints []constraint // set of constraints
callsites []*callsite // all callsites
genq []*cgnode // queue of functions to generate constraints for
intrinsics map[*ssa.Function]intrinsic // non-nil values are summaries for intrinsic fns
funcObj map[*ssa.Function]nodeid // default function object for each func
probes map[*ssa.CallCommon]nodeid // maps call to print() to argument variable
valNode map[ssa.Value]nodeid // node for each ssa.Value
work worklist // solver's worklist
// Reflection:
hasher typemap.Hasher // cache of type hashes
reflectValueObj types.Object // type symbol for reflect.Value (if present)
reflectRtypeObj types.Object // *types.TypeName for reflect.rtype (if present)
reflectRtype *types.Pointer // *reflect.rtype
rtypes typemap.M // nodeid of canonical *rtype-tagged object for type T
reflectZeros typemap.M // nodeid of canonical T-tagged object for zero value
}
// enclosingObj returns the object (addressible memory object) that encloses node id.
// Panic ensues if that node does not belong to any object.
func (a *analysis) enclosingObj(id nodeid) *object {
// Find previous node with obj != nil.
for i := id; i >= 0; i-- {
n := a.nodes[i]
if obj := n.obj; obj != nil {
if i+nodeid(obj.size) <= id {
break // out of bounds
}
return obj
}
}
panic("node has no enclosing object")
}
// labelFor returns the Label for node id.
// Panic ensues if that node is not addressable.
func (a *analysis) labelFor(id nodeid) *Label {
return &Label{
obj: a.enclosingObj(id),
subelement: a.nodes[id].subelement,
}
}
func (a *analysis) warnf(pos token.Pos, format string, args ...interface{}) {
if Warn := a.config.Warn; Warn != nil {
Warn(pos, format, args...)
} else {
fmt.Fprintf(os.Stderr, "%s: warning: ", a.prog.Fset.Position(pos))
fmt.Fprintf(os.Stderr, format, args...)
fmt.Fprintln(os.Stderr)
}
}
// Analyze runs the pointer analysis with the scope and options
// specified by config, and returns the (synthetic) root of the callgraph.
//
func Analyze(config *Config) CallGraphNode {
a := &analysis{
config: config,
log: config.Log,
prog: config.prog(),
valNode: make(map[ssa.Value]nodeid),
flattenMemo: make(map[types.Type][]*fieldInfo),
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
hasher: typemap.MakeHasher(),
intrinsics: make(map[*ssa.Function]intrinsic),
funcObj: make(map[*ssa.Function]nodeid),
probes: make(map[*ssa.CallCommon]nodeid),
work: makeMapWorklist(),
}
go.tools/importer: generalize command-line syntax. Motivation: pointer analysis tools (like the oracle) want the user to specify a set of initial packages, like 'go test'. This change enables the user to specify a set of packages on the command line using importer.LoadInitialPackages(args). Each argument is interpreted as either: - a comma-separated list of *.go source files together comprising one non-importable ad-hoc package. e.g. "src/pkg/net/http/triv.go" gives us [main]. - an import path, denoting both the imported package and its non-importable external test package, if any. e.g. "fmt" gives us [fmt, fmt_test]. Current type-checker limitations mean that only the first import path may contribute tests: multiple packages augmented by *_test.go files could create import cycles, which 'go test' avoids by building a separate executable for each one. That approach is less attractive for static analysis. Details: (many files touched, but importer.go is the crux) importer: - PackageInfo.Importable boolean indicates whether package is importable. - un-expose Importer.Packages; expose AllPackages() instead. - CreatePackageFromArgs has become LoadInitialPackages. - imports() moved to util.go, renamed importsOf(). - InitialPackagesUsage usage message exported to clients. - the package name for ad-hoc packages now comes from the 'package' decl, not "main". ssa.Program: - added CreatePackages() method - PackagesByPath un-exposed, renamed 'imported'. - expose AllPackages and ImportedPackage accessors. oracle: - describe: explain and workaround a go/types bug. Misc: - Removed various unnecessary error.Error() calls in Printf args. R=crawshaw CC=golang-dev https://golang.org/cl/13579043
2013-09-06 16:13:57 -06:00
if reflect := a.prog.ImportedPackage("reflect"); reflect != nil {
a.reflectValueObj = reflect.Object.Scope().Lookup("Value")
a.reflectRtypeObj = reflect.Object.Scope().Lookup("rtype")
a.reflectRtype = types.NewPointer(a.reflectRtypeObj.Type())
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
// Override flattening of reflect.Value, treating it like a basic type.
tReflectValue := a.reflectValueObj.Type()
a.flattenMemo[tReflectValue] = []*fieldInfo{{typ: tReflectValue}}
a.rtypes.SetHasher(a.hasher)
a.reflectZeros.SetHasher(a.hasher)
}
if false {
a.log = os.Stderr // for debugging crashes; extremely verbose
}
if a.log != nil {
fmt.Fprintln(a.log, "======== NEW ANALYSIS ========")
}
root := a.generate()
// ---------- Presolver ----------
// TODO(adonovan): opt: presolver optimisations.
// ---------- Solver ----------
a.solve()
if a.log != nil {
// Dump solution.
for i, n := range a.nodes {
if n.pts != nil {
fmt.Fprintf(a.log, "pts(n%d) = %s : %s\n", i, n.pts, n.typ)
}
}
}
// Notify the client of the callsites if they're interested.
if CallSite := a.config.CallSite; CallSite != nil {
for _, site := range a.callsites {
CallSite(site)
}
}
Call := a.config.Call
for _, site := range a.callsites {
for nid := range a.nodes[site.targets].pts {
go.tools/pointer: reflection, part 1: maps, and some core features. Core: reflect.TypeOf reflect.ValueOf reflect.Zero reflect.Value.Interface Maps: (reflect.Value).MapIndex (reflect.Value).MapKeys (reflect.Value).SetMapIndex (*reflect.rtype).Elem (*reflect.rtype).Key + tests: pointer/testdata/mapreflect.go. oracle/testdata/src/main/reflection.go. Interface objects (T, V...) have been renamed "tagged objects". Abstraction: we model reflect.Value similar to interface{}---as a pointer that points only to tagged objects---but a reflect.Value may also point to an "indirect tagged object", one in which the payload V is of type *T not T. These are required because reflect.Values can hold lvalues, e.g. when derived via Field() or Elem(), though we won't use them till we get to structs and pointers. Solving: each reflection intrinsic defines a new constraint and resolution rule. Because of the nature of reflection, generalizing across types, the resolution rules dynamically create additional complex constraints during solving, where previously only simple (copy) constraints were created. This requires some solver changes: The work done before the main solver loop (to attach new constraints to the graph) is now done before each iteration, in processNewConstraints. Its loop over constraints is broken into two passes: the first handles base (addr-of) constraints, the second handles simple and complex constraints. constraint.init() has been inlined. The only behaviour that varies across constraints is ptr() Sadly this will pessimize presolver optimisations, when we get there; such is the price of reflection. Objects: reflection intrinsics create objects (i.e. cause memory allocations) with no SSA operation. We will represent them as the cgnode of the instrinsic (e.g. reflect.New), so we extend Labels and node.data to represent objects as a product (not sum) of ssa.Value and cgnode and pull this out into its own type, struct object. This simplifies a number of invariants and saves space. The ntObject flag is now represented by obj!=nil; the other flags are moved into object. cgnodes are now always recorded in objects/Labels for which it is appropriate (all but those for globals, constants and the shared contours for functions). Also: - Prepopulate the flattenMemo cache to consider reflect.Value a fake pointer, not a struct. - Improve accessors and documentation on type Label. - @conctypes assertions renamed @types (since dyn. types needn't be concrete). - add oracle 'describe' test on an interface (missing, an oversight). R=crawshaw CC=golang-dev https://golang.org/cl/13418048
2013-09-16 07:49:10 -06:00
cgn := a.nodes[nid].obj.cgn
// Notify the client of the call graph, if
// they're interested.
if Call != nil {
go.tools/oracle: add option to output results in JSON syntax. See json.go for interface specification. Example usage: % oracle -format=json -mode=callgraph code.google.com/p/go.tools/cmd/oracle + Tests, based on (small) golden files. Overview: Each <query>Result structure has been "lowered" so that all but the most trivial logic in each display() function has been moved to the main query. Each one now has a toJSON method that populates a json.Result struct. Though the <query>Result structs are similar to the correponding JSON protocol, they're not close enough to be used directly; for example, the former contain richer semantic entities (token.Pos, ast.Expr, ssa.Value, pointer.Pointer, etc) whereas JSON contains only their printed forms using Go basic types. The choices of what levels of abstractions the two sets of structs should have is somewhat arbitrary. We may want richer information in the JSON output in future. Details: - oracle.Main has been split into oracle.Query() and the printing of the oracle.Result. - the display() method no longer needs an *oracle param, only a print function. - callees: sort the result for determinism. - callees: compute the union across all contexts. - callers: sort the results for determinism. - describe(package): fixed a bug in the predicate for method accessibility: an unexported method defined in pkg A may belong to a type defined in package B (via embedding/promotion) and may thus be accessible to A. New accessibleMethods() utility fixes this. - describe(type): filter methods by accessibility. - added tests of 'callgraph'. - pointer: eliminated the 'caller CallGraphNode' parameter from pointer.Context.Call callback since it was redundant w.r.t site.Caller(). - added warning if CGO_ENABLED is unset. R=crawshaw CC=golang-dev https://golang.org/cl/13270045
2013-09-03 13:29:02 -06:00
Call(site, cgn)
}
// Warn about calls to non-intrinsic external functions.
if fn := cgn.fn; fn.Blocks == nil && a.findIntrinsic(fn) == nil {
a.warnf(site.Pos(), "unsound call to unknown intrinsic: %s", fn)
a.warnf(fn.Pos(), " (declared here)")
}
}
}
return root
}