1
0
mirror of https://github.com/golang/go synced 2024-10-04 16:31:22 -06:00
go/src/pkg/runtime/malloc.goc

500 lines
14 KiB
Plaintext
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// See malloc.h for overview.
//
// TODO(rsc): double-check stats.
package runtime
#include "runtime.h"
#include "arch_GOARCH.h"
ld: detect stack overflow due to NOSPLIT Fix problems found. On amd64, various library routines had bigger stack frames than expected, because large function calls had been added. runtime.assertI2T: nosplit stack overflow 120 assumed on entry to runtime.assertI2T 8 after runtime.assertI2T uses 112 0 on entry to runtime.newTypeAssertionError -8 on entry to runtime.morestack01 runtime.assertE2E: nosplit stack overflow 120 assumed on entry to runtime.assertE2E 16 after runtime.assertE2E uses 104 8 on entry to runtime.panic 0 on entry to runtime.morestack16 -8 after runtime.morestack16 uses 8 runtime.assertE2T: nosplit stack overflow 120 assumed on entry to runtime.assertE2T 16 after runtime.assertE2T uses 104 8 on entry to runtime.panic 0 on entry to runtime.morestack16 -8 after runtime.morestack16 uses 8 runtime.newselect: nosplit stack overflow 120 assumed on entry to runtime.newselect 56 after runtime.newselect uses 64 48 on entry to runtime.printf 8 after runtime.printf uses 40 0 on entry to vprintf -8 on entry to runtime.morestack16 runtime.selectdefault: nosplit stack overflow 120 assumed on entry to runtime.selectdefault 56 after runtime.selectdefault uses 64 48 on entry to runtime.printf 8 after runtime.printf uses 40 0 on entry to vprintf -8 on entry to runtime.morestack16 runtime.selectgo: nosplit stack overflow 120 assumed on entry to runtime.selectgo 0 after runtime.selectgo uses 120 -8 on entry to runtime.gosched On arm, 5c was tagging functions NOSPLIT that should not have been, like the recursive function printpanics: printpanics: nosplit stack overflow 124 assumed on entry to printpanics 112 after printpanics uses 12 108 on entry to printpanics 96 after printpanics uses 12 92 on entry to printpanics 80 after printpanics uses 12 76 on entry to printpanics 64 after printpanics uses 12 60 on entry to printpanics 48 after printpanics uses 12 44 on entry to printpanics 32 after printpanics uses 12 28 on entry to printpanics 16 after printpanics uses 12 12 on entry to printpanics 0 after printpanics uses 12 -4 on entry to printpanics R=r, r2 CC=golang-dev https://golang.org/cl/4188061
2011-02-22 15:40:40 -07:00
#include "stack.h"
#include "malloc.h"
#include "defs_GOOS_GOARCH.h"
#include "type.h"
MHeap runtime·mheap;
extern MStats mstats; // defined in extern.go
extern volatile int32 runtime·MemProfileRate;
// Allocate an object of at least size bytes.
// Small objects are allocated from the per-thread cache's free lists.
// Large objects (> 32 kB) are allocated straight from the heap.
void*
runtime·mallocgc(uintptr size, uint32 flag, int32 dogc, int32 zeroed)
{
int32 sizeclass, rate;
MCache *c;
uintptr npages;
MSpan *s;
void *v;
if(runtime·gcwaiting && g != m->g0 && m->locks == 0)
runtime·gosched();
if(m->mallocing)
runtime·throw("malloc/free - deadlock");
m->mallocing = 1;
if(size == 0)
size = 1;
c = m->mcache;
c->local_nmalloc++;
if(size <= MaxSmallSize) {
// Allocate from mcache free lists.
sizeclass = runtime·SizeToClass(size);
size = runtime·class_to_size[sizeclass];
v = runtime·MCache_Alloc(c, sizeclass, size, zeroed);
if(v == nil)
runtime·throw("out of memory");
c->local_alloc += size;
c->local_total_alloc += size;
c->local_by_size[sizeclass].nmalloc++;
} else {
// TODO(rsc): Report tracebacks for very large allocations.
// Allocate directly from heap.
npages = size >> PageShift;
if((size & PageMask) != 0)
npages++;
s = runtime·MHeap_Alloc(&runtime·mheap, npages, 0, 1);
if(s == nil)
runtime·throw("out of memory");
size = npages<<PageShift;
c->local_alloc += size;
c->local_total_alloc += size;
v = (void*)(s->start << PageShift);
// setup for mark sweep
runtime·markspan(v, 0, 0, true);
}
if(!(flag & FlagNoGC))
runtime·markallocated(v, size, (flag&FlagNoPointers) != 0);
m->mallocing = 0;
if(!(flag & FlagNoProfiling) && (rate = runtime·MemProfileRate) > 0) {
if(size >= rate)
goto profile;
if(m->mcache->next_sample > size)
m->mcache->next_sample -= size;
else {
// pick next profile time
// If you change this, also change allocmcache.
if(rate > 0x3fffffff) // make 2*rate not overflow
rate = 0x3fffffff;
m->mcache->next_sample = runtime·fastrand1() % (2*rate);
profile:
runtime·setblockspecial(v, true);
runtime·MProf_Malloc(v, size);
}
}
if(dogc && mstats.heap_alloc >= mstats.next_gc)
runtime·gc(0);
return v;
}
void*
runtime·malloc(uintptr size)
{
return runtime·mallocgc(size, 0, 0, 1);
}
// Free the object whose base pointer is v.
void
runtime·free(void *v)
{
int32 sizeclass;
MSpan *s;
MCache *c;
uint32 prof;
uintptr size;
if(v == nil)
return;
// If you change this also change mgc0.c:/^sweep,
// which has a copy of the guts of free.
if(m->mallocing)
runtime·throw("malloc/free - deadlock");
m->mallocing = 1;
if(!runtime·mlookup(v, nil, nil, &s)) {
runtime·printf("free %p: not an allocated block\n", v);
runtime·throw("free runtime·mlookup");
}
prof = runtime·blockspecial(v);
// Find size class for v.
sizeclass = s->sizeclass;
c = m->mcache;
if(sizeclass == 0) {
// Large object.
size = s->npages<<PageShift;
*(uintptr*)(s->start<<PageShift) = 1; // mark as "needs to be zeroed"
// Must mark v freed before calling unmarkspan and MHeap_Free:
// they might coalesce v into other spans and change the bitmap further.
runtime·markfreed(v, size);
runtime·unmarkspan(v, 1<<PageShift);
runtime·MHeap_Free(&runtime·mheap, s, 1);
} else {
// Small object.
size = runtime·class_to_size[sizeclass];
if(size > sizeof(uintptr))
((uintptr*)v)[1] = 1; // mark as "needs to be zeroed"
// Must mark v freed before calling MCache_Free:
// it might coalesce v and other blocks into a bigger span
// and change the bitmap further.
runtime·markfreed(v, size);
c->local_by_size[sizeclass].nfree++;
runtime·MCache_Free(c, v, sizeclass, size);
}
c->local_alloc -= size;
if(prof)
runtime·MProf_Free(v, size);
m->mallocing = 0;
}
int32
runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
{
uintptr n, i;
byte *p;
MSpan *s;
m->mcache->local_nlookup++;
s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
if(sp)
*sp = s;
if(s == nil) {
runtime·checkfreed(v, 1);
if(base)
*base = nil;
if(size)
*size = 0;
return 0;
}
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass == 0) {
// Large object.
if(base)
*base = p;
if(size)
*size = s->npages<<PageShift;
return 1;
}
if((byte*)v >= (byte*)s->limit) {
// pointers past the last block do not count as pointers.
return 0;
}
n = runtime·class_to_size[s->sizeclass];
if(base) {
i = ((byte*)v - p)/n;
*base = p + i*n;
}
if(size)
*size = n;
return 1;
}
MCache*
runtime·allocmcache(void)
{
int32 rate;
MCache *c;
runtime·lock(&runtime·mheap);
c = runtime·FixAlloc_Alloc(&runtime·mheap.cachealloc);
mstats.mcache_inuse = runtime·mheap.cachealloc.inuse;
mstats.mcache_sys = runtime·mheap.cachealloc.sys;
runtime·unlock(&runtime·mheap);
// Set first allocation sample size.
rate = runtime·MemProfileRate;
if(rate > 0x3fffffff) // make 2*rate not overflow
rate = 0x3fffffff;
if(rate != 0)
c->next_sample = runtime·fastrand1() % (2*rate);
return c;
}
void
runtime·purgecachedstats(M* m)
{
MCache *c;
// Protected by either heap or GC lock.
c = m->mcache;
mstats.heap_alloc += c->local_cachealloc;
c->local_cachealloc = 0;
mstats.heap_objects += c->local_objects;
c->local_objects = 0;
mstats.nmalloc += c->local_nmalloc;
c->local_nmalloc = 0;
mstats.nfree += c->local_nfree;
c->local_nfree = 0;
mstats.nlookup += c->local_nlookup;
c->local_nlookup = 0;
mstats.alloc += c->local_alloc;
c->local_alloc= 0;
mstats.total_alloc += c->local_total_alloc;
c->local_total_alloc= 0;
}
uintptr runtime·sizeof_C_MStats = sizeof(MStats);
#define MaxArena32 (2U<<30)
void
runtime·mallocinit(void)
{
byte *p;
uintptr arena_size, bitmap_size;
extern byte end[];
byte *want;
p = nil;
arena_size = 0;
bitmap_size = 0;
// for 64-bit build
USED(p);
USED(arena_size);
USED(bitmap_size);
runtime·InitSizes();
// Set up the allocation arena, a contiguous area of memory where
// allocated data will be found. The arena begins with a bitmap large
// enough to hold 4 bits per allocated word.
if(sizeof(void*) == 8) {
// On a 64-bit machine, allocate from a single contiguous reservation.
// 16 GB should be big enough for now.
//
// The code will work with the reservation at any address, but ask
// SysReserve to use 0x000000f800000000 if possible.
// Allocating a 16 GB region takes away 36 bits, and the amd64
// doesn't let us choose the top 17 bits, so that leaves the 11 bits
// in the middle of 0x00f8 for us to choose. Choosing 0x00f8 means
// that the valid memory addresses will begin 0x00f8, 0x00f9, 0x00fa, 0x00fb.
// None of the bytes f8 f9 fa fb can appear in valid UTF-8, and
// they are otherwise as far from ff (likely a common byte) as possible.
// Choosing 0x00 for the leading 6 bits was more arbitrary, but it
// is not a common ASCII code point either. Using 0x11f8 instead
// caused out of memory errors on OS X during thread allocations.
// These choices are both for debuggability and to reduce the
// odds of the conservative garbage collector not collecting memory
// because some non-pointer block of memory had a bit pattern
// that matched a memory address.
//
// Actually we reserve 17 GB (because the bitmap ends up being 1 GB)
// but it hardly matters: fc is not valid UTF-8 either, and we have to
// allocate 15 GB before we get that far.
//
// If this fails we fall back to the 32 bit memory mechanism
arena_size = 16LL<<30;
bitmap_size = arena_size / (sizeof(void*)*8/4);
p = runtime·SysReserve((void*)(0x00f8ULL<<32), bitmap_size + arena_size);
}
if (p == nil) {
// On a 32-bit machine, we can't typically get away
// with a giant virtual address space reservation.
// Instead we map the memory information bitmap
// immediately after the data segment, large enough
// to handle another 2GB of mappings (256 MB),
// along with a reservation for another 512 MB of memory.
// When that gets used up, we'll start asking the kernel
// for any memory anywhere and hope it's in the 2GB
// following the bitmap (presumably the executable begins
// near the bottom of memory, so we'll have to use up
// most of memory before the kernel resorts to giving out
// memory before the beginning of the text segment).
//
// Alternatively we could reserve 512 MB bitmap, enough
// for 4GB of mappings, and then accept any memory the
// kernel threw at us, but normally that's a waste of 512 MB
// of address space, which is probably too much in a 32-bit world.
bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
arena_size = 512<<20;
// SysReserve treats the address we ask for, end, as a hint,
// not as an absolute requirement. If we ask for the end
// of the data segment but the operating system requires
// a little more space before we can start allocating, it will
// give out a slightly higher pointer. Except QEMU, which
// is buggy, as usual: it won't adjust the pointer upward.
// So adjust it upward a little bit ourselves: 1/4 MB to get
// away from the running binary image and then round up
// to a MB boundary.
want = (byte*)(((uintptr)end + (1<<18) + (1<<20) - 1)&~((1<<20)-1));
p = runtime·SysReserve(want, bitmap_size + arena_size);
if(p == nil)
runtime·throw("runtime: cannot reserve arena virtual address space");
}
if((uintptr)p & (((uintptr)1<<PageShift)-1))
runtime·throw("runtime: SysReserve returned unaligned address");
runtime·mheap.bitmap = p;
runtime·mheap.arena_start = p + bitmap_size;
runtime·mheap.arena_used = runtime·mheap.arena_start;
runtime·mheap.arena_end = runtime·mheap.arena_start + arena_size;
// Initialize the rest of the allocator.
runtime·MHeap_Init(&runtime·mheap, runtime·SysAlloc);
m->mcache = runtime·allocmcache();
// See if it works.
runtime·free(runtime·malloc(1));
}
void*
runtime·MHeap_SysAlloc(MHeap *h, uintptr n)
{
byte *p;
if(n <= h->arena_end - h->arena_used) {
// Keep taking from our reservation.
p = h->arena_used;
runtime·SysMap(p, n);
h->arena_used += n;
runtime·MHeap_MapBits(h);
return p;
}
// If using 64-bit, our reservation is all we have.
if(sizeof(void*) == 8 && (uintptr)h->bitmap >= 0xffffffffU)
return nil;
// On 32-bit, once the reservation is gone we can
// try to get memory at a location chosen by the OS
// and hope that it is in the range we allocated bitmap for.
p = runtime·SysAlloc(n);
if(p == nil)
return nil;
if(p < h->arena_start || p+n - h->arena_start >= MaxArena32) {
runtime·printf("runtime: memory allocated by OS not in usable range\n");
runtime·SysFree(p, n);
return nil;
}
if(p+n > h->arena_used) {
h->arena_used = p+n;
if(h->arena_used > h->arena_end)
h->arena_end = h->arena_used;
runtime·MHeap_MapBits(h);
}
return p;
}
// Runtime stubs.
void*
runtime·mal(uintptr n)
{
return runtime·mallocgc(n, 0, 1, 1);
}
func new(typ *Type) (ret *uint8) {
uint32 flag = typ->kind&KindNoPointers ? FlagNoPointers : 0;
ret = runtime·mallocgc(typ->size, flag, 1, 1);
FLUSH(&ret);
}
void*
runtime·stackalloc(uint32 n)
{
runtime: always run stackalloc on scheduler stack Avoids deadlocks like the one below, in which a stack split happened in order to call lock(&stacks), but then the stack unsplit cannot run because stacks is now locked. The only code calling stackalloc that wasn't on a scheduler stack already was malg, which creates a new goroutine. runtime.futex+0x23 /home/rsc/g/go/src/pkg/runtime/linux/amd64/sys.s:139 runtime.futex() futexsleep+0x50 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:51 futexsleep(0x5b0188, 0x300000003, 0x100020000, 0x4159e2) futexlock+0x85 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:119 futexlock(0x5b0188, 0x5b0188) runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x7f0d27b4a000) runtime.stackfree+0x4d /home/rsc/g/go/src/pkg/runtime/malloc.goc:336 runtime.stackfree(0x7f0d27b4a000, 0x1000, 0x8, 0x7fff37e1e218) runtime.oldstack+0xa6 /home/rsc/g/go/src/pkg/runtime/proc.c:705 runtime.oldstack() runtime.lessstack+0x22 /home/rsc/g/go/src/pkg/runtime/amd64/asm.s:224 runtime.lessstack() ----- lessstack called from goroutine 2 ----- runtime.lock+0x56 /home/rsc/g/go/src/pkg/runtime/linux/thread.c:158 runtime.lock(0x5b0188, 0x40a5e2) runtime.stackalloc+0x55 /home/rsc/g/go/src/pkg/runtime/malloc.c:316 runtime.stackalloc(0x1000, 0x4055b0) runtime.malg+0x3d /home/rsc/g/go/src/pkg/runtime/proc.c:803 runtime.malg(0x1000, 0x40add9) runtime.newproc1+0x12b /home/rsc/g/go/src/pkg/runtime/proc.c:854 runtime.newproc1(0xf840027440, 0x7f0d27b49230, 0x0, 0x49f238, 0x40, ...) runtime.newproc+0x2f /home/rsc/g/go/src/pkg/runtime/proc.c:831 runtime.newproc(0x0, 0xf840027440, 0xf800000010, 0x44b059) ... R=r, r2 CC=golang-dev https://golang.org/cl/4216045
2011-02-23 13:51:20 -07:00
// Stackalloc must be called on scheduler stack, so that we
// never try to grow the stack during the code that stackalloc runs.
// Doing so would cause a deadlock (issue 1547).
if(g != m->g0)
runtime·throw("stackalloc not on scheduler stack");
// Stack allocator uses malloc/free most of the time,
// but if we're in the middle of malloc and need stack,
// we have to do something else to avoid deadlock.
// In that case, we fall back on a fixed-size free-list
// allocator, assuming that inside malloc all the stack
// frames are small, so that all the stack allocations
// will be a single size, the minimum (right now, 5k).
if(m->mallocing || m->gcing || n == FixedStack) {
if(n != FixedStack) {
runtime·printf("stackalloc: in malloc, size=%d want %d", FixedStack, n);
runtime·throw("stackalloc");
}
return runtime·FixAlloc_Alloc(m->stackalloc);
}
return runtime·mallocgc(n, FlagNoProfiling|FlagNoGC, 0, 0);
}
void
runtime·stackfree(void *v, uintptr n)
{
if(m->mallocing || m->gcing || n == FixedStack) {
runtime·FixAlloc_Free(m->stackalloc, v);
return;
}
runtime·free(v);
}
func GC() {
runtime·gc(1);
}
func SetFinalizer(obj Eface, finalizer Eface) {
byte *base;
uintptr size;
FuncType *ft;
int32 i, nret;
Type *t;
if(obj.type == nil) {
runtime·printf("runtime.SetFinalizer: first argument is nil interface\n");
goto throw;
}
if(obj.type->kind != KindPtr) {
runtime·printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.type->string);
goto throw;
}
if(!runtime·mlookup(obj.data, &base, &size, nil) || obj.data != base) {
runtime·printf("runtime.SetFinalizer: pointer not at beginning of allocated block\n");
goto throw;
}
nret = 0;
if(finalizer.type != nil) {
if(finalizer.type->kind != KindFunc)
goto badfunc;
ft = (FuncType*)finalizer.type;
if(ft->dotdotdot || ft->in.len != 1 || *(Type**)ft->in.array != obj.type)
goto badfunc;
// compute size needed for return parameters
for(i=0; i<ft->out.len; i++) {
t = ((Type**)ft->out.array)[i];
nret = (nret + t->align - 1) & ~(t->align - 1);
nret += t->size;
}
nret = (nret + sizeof(void*)-1) & ~(sizeof(void*)-1);
}
if(!runtime·addfinalizer(obj.data, finalizer.data, nret)) {
runtime·printf("runtime.SetFinalizer: finalizer already set\n");
goto throw;
}
return;
badfunc:
runtime·printf("runtime.SetFinalizer: second argument is %S, not func(%S)\n", *finalizer.type->string, *obj.type->string);
throw:
runtime·throw("runtime.SetFinalizer");
}