1
0
mirror of https://github.com/golang/go synced 2024-11-19 05:14:50 -07:00
go/ssa/interp/ops.go

1382 lines
31 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package interp
import (
"bytes"
"fmt"
"go/token"
"strings"
"sync"
"syscall"
"unsafe"
"code.google.com/p/go.tools/go/exact"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/ssa"
)
// If the target program panics, the interpreter panics with this type.
type targetPanic struct {
v value
}
// If the target program calls exit, the interpreter panics with this type.
type exitPanic int
// constValue returns the value of the constant with the
// dynamic type tag appropriate for c.Type().
func constValue(c *ssa.Const) value {
if c.IsNil() {
return zero(c.Type()) // typed nil
}
// By destination type:
switch t := c.Type().Underlying().(type) {
case *types.Basic:
// TODO(adonovan): eliminate untyped constants from SSA form.
switch t.Kind() {
case types.Bool, types.UntypedBool:
return exact.BoolVal(c.Value)
case types.Int, types.UntypedInt:
// Assume sizeof(int) is same on host and target.
return int(c.Int64())
case types.Int8:
return int8(c.Int64())
case types.Int16:
return int16(c.Int64())
case types.Int32, types.UntypedRune:
return int32(c.Int64())
case types.Int64:
return c.Int64()
case types.Uint:
// Assume sizeof(uint) is same on host and target.
return uint(c.Uint64())
case types.Uint8:
return uint8(c.Uint64())
case types.Uint16:
return uint16(c.Uint64())
case types.Uint32:
return uint32(c.Uint64())
case types.Uint64:
return c.Uint64()
case types.Uintptr:
// Assume sizeof(uintptr) is same on host and target.
return uintptr(c.Uint64())
case types.Float32:
return float32(c.Float64())
case types.Float64, types.UntypedFloat:
return c.Float64()
case types.Complex64:
return complex64(c.Complex128())
case types.Complex128, types.UntypedComplex:
return c.Complex128()
case types.String, types.UntypedString:
if c.Value.Kind() == exact.String {
return exact.StringVal(c.Value)
}
return string(rune(c.Int64()))
case types.UnsafePointer:
panic("unsafe.Pointer constant") // not possible
case types.UntypedNil:
// nil was handled above.
}
case *types.Slice:
switch et := t.Elem().Underlying().(type) {
case *types.Basic:
switch et.Kind() {
case types.Byte: // string -> []byte
var v []value
for _, b := range []byte(exact.StringVal(c.Value)) {
v = append(v, b)
}
return v
case types.Rune: // string -> []rune
var v []value
for _, r := range []rune(exact.StringVal(c.Value)) {
v = append(v, r)
}
return v
}
}
}
panic(fmt.Sprintf("constValue: Value.(type)=%T Type()=%s", c.Value, c.Type()))
}
// asInt converts x, which must be an integer, to an int suitable for
// use as a slice or array index or operand to make().
func asInt(x value) int {
switch x := x.(type) {
case int:
return x
case int8:
return int(x)
case int16:
return int(x)
case int32:
return int(x)
case int64:
return int(x)
case uint:
return int(x)
case uint8:
return int(x)
case uint16:
return int(x)
case uint32:
return int(x)
case uint64:
return int(x)
case uintptr:
return int(x)
}
panic(fmt.Sprintf("cannot convert %T to int", x))
}
// asUint64 converts x, which must be an unsigned integer, to a uint64
// suitable for use as a bitwise shift count.
func asUint64(x value) uint64 {
switch x := x.(type) {
case uint:
return uint64(x)
case uint8:
return uint64(x)
case uint16:
return uint64(x)
case uint32:
return uint64(x)
case uint64:
return x
case uintptr:
return uint64(x)
}
panic(fmt.Sprintf("cannot convert %T to uint64", x))
}
// zero returns a new "zero" value of the specified type.
func zero(t types.Type) value {
switch t := t.(type) {
case *types.Basic:
if t.Kind() == types.UntypedNil {
panic("untyped nil has no zero value")
}
if t.Info()&types.IsUntyped != 0 {
// TODO(adonovan): make it an invariant that
// this is unreachable. Currently some
// constants have 'untyped' types when they
// should be defaulted by the typechecker.
t = ssa.DefaultType(t).(*types.Basic)
}
switch t.Kind() {
case types.Bool:
return false
case types.Int:
return int(0)
case types.Int8:
return int8(0)
case types.Int16:
return int16(0)
case types.Int32:
return int32(0)
case types.Int64:
return int64(0)
case types.Uint:
return uint(0)
case types.Uint8:
return uint8(0)
case types.Uint16:
return uint16(0)
case types.Uint32:
return uint32(0)
case types.Uint64:
return uint64(0)
case types.Uintptr:
return uintptr(0)
case types.Float32:
return float32(0)
case types.Float64:
return float64(0)
case types.Complex64:
return complex64(0)
case types.Complex128:
return complex128(0)
case types.String:
return ""
case types.UnsafePointer:
return unsafe.Pointer(nil)
default:
panic(fmt.Sprint("zero for unexpected type:", t))
}
case *types.Pointer:
return (*value)(nil)
case *types.Array:
a := make(array, t.Len())
for i := range a {
a[i] = zero(t.Elem())
}
return a
case *types.Named:
return zero(t.Underlying())
case *types.Interface:
return iface{} // nil type, methodset and value
case *types.Slice:
return []value(nil)
case *types.Struct:
s := make(structure, t.NumFields())
for i := range s {
s[i] = zero(t.Field(i).Type())
}
return s
case *types.Chan:
return chan value(nil)
case *types.Map:
if usesBuiltinMap(t.Key()) {
return map[value]value(nil)
}
return (*hashmap)(nil)
case *types.Signature:
return (*ssa.Function)(nil)
}
panic(fmt.Sprint("zero: unexpected ", t))
}
// slice returns x[lo:hi]. Either or both of lo and hi may be nil.
func slice(x, lo, hi value) value {
l := 0
if lo != nil {
l = asInt(lo)
}
switch x := x.(type) {
case string:
if hi != nil {
return x[l:asInt(hi)]
}
return x[l:]
case []value:
if hi != nil {
return x[l:asInt(hi)]
}
return x[l:]
case *value: // *array
a := (*x).(array)
if hi != nil {
return []value(a)[l:asInt(hi)]
}
return []value(a)[l:]
}
panic(fmt.Sprintf("slice: unexpected X type: %T", x))
}
// lookup returns x[idx] where x is a map or string.
func lookup(instr *ssa.Lookup, x, idx value) value {
switch x := x.(type) { // map or string
case map[value]value, *hashmap:
var v value
var ok bool
switch x := x.(type) {
case map[value]value:
v, ok = x[idx]
case *hashmap:
v = x.lookup(idx.(hashable))
ok = v != nil
}
if ok {
v = copyVal(v)
} else {
v = zero(instr.X.Type().Underlying().(*types.Map).Elem())
}
if instr.CommaOk {
v = tuple{v, ok}
}
return v
case string:
return x[asInt(idx)]
}
panic(fmt.Sprintf("unexpected x type in Lookup: %T", x))
}
// binop implements all arithmetic and logical binary operators for
// numeric datatypes and strings. Both operands must have identical
// dynamic type.
//
func binop(op token.Token, t types.Type, x, y value) value {
switch op {
case token.ADD:
switch x.(type) {
case int:
return x.(int) + y.(int)
case int8:
return x.(int8) + y.(int8)
case int16:
return x.(int16) + y.(int16)
case int32:
return x.(int32) + y.(int32)
case int64:
return x.(int64) + y.(int64)
case uint:
return x.(uint) + y.(uint)
case uint8:
return x.(uint8) + y.(uint8)
case uint16:
return x.(uint16) + y.(uint16)
case uint32:
return x.(uint32) + y.(uint32)
case uint64:
return x.(uint64) + y.(uint64)
case uintptr:
return x.(uintptr) + y.(uintptr)
case float32:
return x.(float32) + y.(float32)
case float64:
return x.(float64) + y.(float64)
case complex64:
return x.(complex64) + y.(complex64)
case complex128:
return x.(complex128) + y.(complex128)
case string:
return x.(string) + y.(string)
}
case token.SUB:
switch x.(type) {
case int:
return x.(int) - y.(int)
case int8:
return x.(int8) - y.(int8)
case int16:
return x.(int16) - y.(int16)
case int32:
return x.(int32) - y.(int32)
case int64:
return x.(int64) - y.(int64)
case uint:
return x.(uint) - y.(uint)
case uint8:
return x.(uint8) - y.(uint8)
case uint16:
return x.(uint16) - y.(uint16)
case uint32:
return x.(uint32) - y.(uint32)
case uint64:
return x.(uint64) - y.(uint64)
case uintptr:
return x.(uintptr) - y.(uintptr)
case float32:
return x.(float32) - y.(float32)
case float64:
return x.(float64) - y.(float64)
case complex64:
return x.(complex64) - y.(complex64)
case complex128:
return x.(complex128) - y.(complex128)
}
case token.MUL:
switch x.(type) {
case int:
return x.(int) * y.(int)
case int8:
return x.(int8) * y.(int8)
case int16:
return x.(int16) * y.(int16)
case int32:
return x.(int32) * y.(int32)
case int64:
return x.(int64) * y.(int64)
case uint:
return x.(uint) * y.(uint)
case uint8:
return x.(uint8) * y.(uint8)
case uint16:
return x.(uint16) * y.(uint16)
case uint32:
return x.(uint32) * y.(uint32)
case uint64:
return x.(uint64) * y.(uint64)
case uintptr:
return x.(uintptr) * y.(uintptr)
case float32:
return x.(float32) * y.(float32)
case float64:
return x.(float64) * y.(float64)
case complex64:
return x.(complex64) * y.(complex64)
case complex128:
return x.(complex128) * y.(complex128)
}
case token.QUO:
switch x.(type) {
case int:
return x.(int) / y.(int)
case int8:
return x.(int8) / y.(int8)
case int16:
return x.(int16) / y.(int16)
case int32:
return x.(int32) / y.(int32)
case int64:
return x.(int64) / y.(int64)
case uint:
return x.(uint) / y.(uint)
case uint8:
return x.(uint8) / y.(uint8)
case uint16:
return x.(uint16) / y.(uint16)
case uint32:
return x.(uint32) / y.(uint32)
case uint64:
return x.(uint64) / y.(uint64)
case uintptr:
return x.(uintptr) / y.(uintptr)
case float32:
return x.(float32) / y.(float32)
case float64:
return x.(float64) / y.(float64)
case complex64:
return x.(complex64) / y.(complex64)
case complex128:
return x.(complex128) / y.(complex128)
}
case token.REM:
switch x.(type) {
case int:
return x.(int) % y.(int)
case int8:
return x.(int8) % y.(int8)
case int16:
return x.(int16) % y.(int16)
case int32:
return x.(int32) % y.(int32)
case int64:
return x.(int64) % y.(int64)
case uint:
return x.(uint) % y.(uint)
case uint8:
return x.(uint8) % y.(uint8)
case uint16:
return x.(uint16) % y.(uint16)
case uint32:
return x.(uint32) % y.(uint32)
case uint64:
return x.(uint64) % y.(uint64)
case uintptr:
return x.(uintptr) % y.(uintptr)
}
case token.AND:
switch x.(type) {
case int:
return x.(int) & y.(int)
case int8:
return x.(int8) & y.(int8)
case int16:
return x.(int16) & y.(int16)
case int32:
return x.(int32) & y.(int32)
case int64:
return x.(int64) & y.(int64)
case uint:
return x.(uint) & y.(uint)
case uint8:
return x.(uint8) & y.(uint8)
case uint16:
return x.(uint16) & y.(uint16)
case uint32:
return x.(uint32) & y.(uint32)
case uint64:
return x.(uint64) & y.(uint64)
case uintptr:
return x.(uintptr) & y.(uintptr)
}
case token.OR:
switch x.(type) {
case int:
return x.(int) | y.(int)
case int8:
return x.(int8) | y.(int8)
case int16:
return x.(int16) | y.(int16)
case int32:
return x.(int32) | y.(int32)
case int64:
return x.(int64) | y.(int64)
case uint:
return x.(uint) | y.(uint)
case uint8:
return x.(uint8) | y.(uint8)
case uint16:
return x.(uint16) | y.(uint16)
case uint32:
return x.(uint32) | y.(uint32)
case uint64:
return x.(uint64) | y.(uint64)
case uintptr:
return x.(uintptr) | y.(uintptr)
}
case token.XOR:
switch x.(type) {
case int:
return x.(int) ^ y.(int)
case int8:
return x.(int8) ^ y.(int8)
case int16:
return x.(int16) ^ y.(int16)
case int32:
return x.(int32) ^ y.(int32)
case int64:
return x.(int64) ^ y.(int64)
case uint:
return x.(uint) ^ y.(uint)
case uint8:
return x.(uint8) ^ y.(uint8)
case uint16:
return x.(uint16) ^ y.(uint16)
case uint32:
return x.(uint32) ^ y.(uint32)
case uint64:
return x.(uint64) ^ y.(uint64)
case uintptr:
return x.(uintptr) ^ y.(uintptr)
}
case token.AND_NOT:
switch x.(type) {
case int:
return x.(int) &^ y.(int)
case int8:
return x.(int8) &^ y.(int8)
case int16:
return x.(int16) &^ y.(int16)
case int32:
return x.(int32) &^ y.(int32)
case int64:
return x.(int64) &^ y.(int64)
case uint:
return x.(uint) &^ y.(uint)
case uint8:
return x.(uint8) &^ y.(uint8)
case uint16:
return x.(uint16) &^ y.(uint16)
case uint32:
return x.(uint32) &^ y.(uint32)
case uint64:
return x.(uint64) &^ y.(uint64)
case uintptr:
return x.(uintptr) &^ y.(uintptr)
}
case token.SHL:
y := asUint64(y)
switch x.(type) {
case int:
return x.(int) << y
case int8:
return x.(int8) << y
case int16:
return x.(int16) << y
case int32:
return x.(int32) << y
case int64:
return x.(int64) << y
case uint:
return x.(uint) << y
case uint8:
return x.(uint8) << y
case uint16:
return x.(uint16) << y
case uint32:
return x.(uint32) << y
case uint64:
return x.(uint64) << y
case uintptr:
return x.(uintptr) << y
}
case token.SHR:
y := asUint64(y)
switch x.(type) {
case int:
return x.(int) >> y
case int8:
return x.(int8) >> y
case int16:
return x.(int16) >> y
case int32:
return x.(int32) >> y
case int64:
return x.(int64) >> y
case uint:
return x.(uint) >> y
case uint8:
return x.(uint8) >> y
case uint16:
return x.(uint16) >> y
case uint32:
return x.(uint32) >> y
case uint64:
return x.(uint64) >> y
case uintptr:
return x.(uintptr) >> y
}
case token.LSS:
switch x.(type) {
case int:
return x.(int) < y.(int)
case int8:
return x.(int8) < y.(int8)
case int16:
return x.(int16) < y.(int16)
case int32:
return x.(int32) < y.(int32)
case int64:
return x.(int64) < y.(int64)
case uint:
return x.(uint) < y.(uint)
case uint8:
return x.(uint8) < y.(uint8)
case uint16:
return x.(uint16) < y.(uint16)
case uint32:
return x.(uint32) < y.(uint32)
case uint64:
return x.(uint64) < y.(uint64)
case uintptr:
return x.(uintptr) < y.(uintptr)
case float32:
return x.(float32) < y.(float32)
case float64:
return x.(float64) < y.(float64)
case string:
return x.(string) < y.(string)
}
case token.LEQ:
switch x.(type) {
case int:
return x.(int) <= y.(int)
case int8:
return x.(int8) <= y.(int8)
case int16:
return x.(int16) <= y.(int16)
case int32:
return x.(int32) <= y.(int32)
case int64:
return x.(int64) <= y.(int64)
case uint:
return x.(uint) <= y.(uint)
case uint8:
return x.(uint8) <= y.(uint8)
case uint16:
return x.(uint16) <= y.(uint16)
case uint32:
return x.(uint32) <= y.(uint32)
case uint64:
return x.(uint64) <= y.(uint64)
case uintptr:
return x.(uintptr) <= y.(uintptr)
case float32:
return x.(float32) <= y.(float32)
case float64:
return x.(float64) <= y.(float64)
case string:
return x.(string) <= y.(string)
}
case token.EQL:
return eqnil(t, x, y)
case token.NEQ:
return !eqnil(t, x, y)
case token.GTR:
switch x.(type) {
case int:
return x.(int) > y.(int)
case int8:
return x.(int8) > y.(int8)
case int16:
return x.(int16) > y.(int16)
case int32:
return x.(int32) > y.(int32)
case int64:
return x.(int64) > y.(int64)
case uint:
return x.(uint) > y.(uint)
case uint8:
return x.(uint8) > y.(uint8)
case uint16:
return x.(uint16) > y.(uint16)
case uint32:
return x.(uint32) > y.(uint32)
case uint64:
return x.(uint64) > y.(uint64)
case uintptr:
return x.(uintptr) > y.(uintptr)
case float32:
return x.(float32) > y.(float32)
case float64:
return x.(float64) > y.(float64)
case string:
return x.(string) > y.(string)
}
case token.GEQ:
switch x.(type) {
case int:
return x.(int) >= y.(int)
case int8:
return x.(int8) >= y.(int8)
case int16:
return x.(int16) >= y.(int16)
case int32:
return x.(int32) >= y.(int32)
case int64:
return x.(int64) >= y.(int64)
case uint:
return x.(uint) >= y.(uint)
case uint8:
return x.(uint8) >= y.(uint8)
case uint16:
return x.(uint16) >= y.(uint16)
case uint32:
return x.(uint32) >= y.(uint32)
case uint64:
return x.(uint64) >= y.(uint64)
case uintptr:
return x.(uintptr) >= y.(uintptr)
case float32:
return x.(float32) >= y.(float32)
case float64:
return x.(float64) >= y.(float64)
case string:
return x.(string) >= y.(string)
}
}
panic(fmt.Sprintf("invalid binary op: %T %s %T", x, op, y))
}
// eqnil returns the comparison x == y using the equivalence relation
// appropriate for type t.
// If t is a reference type, at most one of x or y may be a nil value
// of that type.
//
func eqnil(t types.Type, x, y value) bool {
switch t.Underlying().(type) {
case *types.Map, *types.Signature, *types.Slice:
// Since these types don't support comparison,
// one of the operands must be a literal nil.
switch x := x.(type) {
case *hashmap:
return (x != nil) == (y.(*hashmap) != nil)
case map[value]value:
return (x != nil) == (y.(map[value]value) != nil)
case *ssa.Function:
switch y := y.(type) {
case *ssa.Function:
return (x != nil) == (y != nil)
case *closure:
return true
}
case *closure:
return (x != nil) == (y.(*ssa.Function) != nil)
case []value:
return (x != nil) == (y.([]value) != nil)
}
panic(fmt.Sprintf("eqnil(%s): illegal dynamic type: %T", t, x))
}
return equals(t, x, y)
}
func unop(instr *ssa.UnOp, x value) value {
switch instr.Op {
case token.ARROW: // receive
v, ok := <-x.(chan value)
if !ok {
v = zero(instr.X.Type().Underlying().(*types.Chan).Elem())
}
if instr.CommaOk {
v = tuple{v, ok}
}
return v
case token.SUB:
switch x := x.(type) {
case int:
return -x
case int8:
return -x
case int16:
return -x
case int32:
return -x
case int64:
return -x
case uint:
return -x
case uint8:
return -x
case uint16:
return -x
case uint32:
return -x
case uint64:
return -x
case uintptr:
return -x
case float32:
return -x
case float64:
return -x
case complex64:
return -x
case complex128:
return -x
}
case token.MUL:
return copyVal(*x.(*value)) // load
case token.NOT:
return !x.(bool)
case token.XOR:
switch x := x.(type) {
case int:
return ^x
case int8:
return ^x
case int16:
return ^x
case int32:
return ^x
case int64:
return ^x
case uint:
return ^x
case uint8:
return ^x
case uint16:
return ^x
case uint32:
return ^x
case uint64:
return ^x
case uintptr:
return ^x
}
}
panic(fmt.Sprintf("invalid unary op %s %T", instr.Op, x))
}
// typeAssert checks whether dynamic type of itf is instr.AssertedType.
// It returns the extracted value on success, and panics on failure,
// unless instr.CommaOk, in which case it always returns a "value,ok" tuple.
//
func typeAssert(i *interpreter, instr *ssa.TypeAssert, itf iface) value {
var v value
err := ""
if itf.t == nil {
err = fmt.Sprintf("interface conversion: interface is nil, not %s", instr.AssertedType)
} else if idst, ok := instr.AssertedType.Underlying().(*types.Interface); ok {
v = itf
err = checkInterface(i, idst, itf)
} else if types.IsIdentical(itf.t, instr.AssertedType) {
v = copyVal(itf.v) // extract value
} else {
go.tools/ssa: implement correct control flow for recovered panic. A function such as this: func one() (x int) { defer func() { recover() }() x = 1 panic("return") } that combines named return parameters (NRPs) with deferred calls that call recover, may return non-zero values despite the fact it doesn't even contain a return statement. (!) This requires a change to the SSA API: all functions' control-flow graphs now have a second entry point, called Recover, which is the block at which control flow resumes after a recovered panic. The Recover block simply loads the NRPs and returns them. As an optimization, most functions don't need a Recover block, so it is omitted. In fact it is only needed for functions that have NRPs and defer a call to another function that _may_ call recover. Dataflow analysis of SSA now requires extra work, since every may-panic instruction has an implicit control-flow edge to the Recover block. The only dataflow analysis so far implemented is SSA renaming, for which we make the following simplifying assumption: the Recover block only loads the NRPs and returns. This means we don't really need to analyze it, we can just skip the "lifting" of such NRPs. We also special-case the Recover block in the dominance computation. Rejected alternative approaches: - Specifying a Recover block for every defer instruction (like a traditional exception handler). This seemed like excessive generality, since Go programs only need the same degenerate form of Recover block. - Adding an instruction to set the Recover block immediately after the named return values are set up, so that dominance can be computed without special-casing. This didn't seem worth the effort. Interpreter: - This CL completely reimplements the panic/recover/ defer logic in the interpreter. It's clearer and simpler and closer to the model in the spec. - Some runtime panic messages have been changed to be closer to gc's, since tests depend on it. - The interpreter now requires that the runtime.runtimeError type be part of the SSA program. This requires that clients import this package prior to invoking the interpreter. This in turn requires (Importer).ImportPackage(path string), which this CL adds. - All $GOROOT/test/recover{,1,2,3}.go tests are now passing. NB, the bug described in coverage.go (defer/recover in a concatenated init function) remains. Will be fixed in a follow-up. Fixes golang/go#6381 R=gri CC=crawshaw, golang-dev https://golang.org/cl/13844043
2013-10-14 13:38:56 -06:00
err = fmt.Sprintf("interface conversion: interface is %s, not %s", itf.t, instr.AssertedType)
}
if err != "" {
if !instr.CommaOk {
panic(err)
}
return tuple{zero(instr.AssertedType), false}
}
if instr.CommaOk {
return tuple{v, true}
}
return v
}
// If CapturedOutput is non-nil, all writes by the interpreted program
// to file descriptors 1 and 2 will also be written to CapturedOutput.
//
// (The $GOROOT/test system requires that the test be considered a
// failure if "BUG" appears in the combined stdout/stderr output, even
// if it exits zero. This is a global variable shared by all
// interpreters in the same process.)
//
var CapturedOutput *bytes.Buffer
var capturedOutputMu sync.Mutex
// write writes bytes b to the target program's file descriptor fd.
// The print/println built-ins and the write() system call funnel
// through here so they can be captured by the test driver.
func write(fd int, b []byte) (int, error) {
if CapturedOutput != nil && (fd == 1 || fd == 2) {
capturedOutputMu.Lock()
CapturedOutput.Write(b) // ignore errors
capturedOutputMu.Unlock()
}
return syscall.Write(fd, b)
}
// callBuiltin interprets a call to builtin fn with arguments args,
// returning its result.
func callBuiltin(caller *frame, callpos token.Pos, fn *ssa.Builtin, args []value) value {
switch fn.Name() {
case "append":
if len(args) == 1 {
return args[0]
}
if s, ok := args[1].(string); ok {
// append([]byte, ...string) []byte
arg0 := args[0].([]value)
for i := 0; i < len(s); i++ {
arg0 = append(arg0, s[i])
}
return arg0
}
// append([]T, ...[]T) []T
return append(args[0].([]value), args[1].([]value)...)
case "copy": // copy([]T, []T) int
if _, ok := args[1].(string); ok {
panic("copy([]byte, string) not yet implemented")
}
return copy(args[0].([]value), args[1].([]value))
case "close": // close(chan T)
close(args[0].(chan value))
return nil
case "delete": // delete(map[K]value, K)
switch m := args[0].(type) {
case map[value]value:
delete(m, args[1])
case *hashmap:
m.delete(args[1].(hashable))
default:
panic(fmt.Sprintf("illegal map type: %T", m))
}
return nil
case "print", "println": // print(any, ...)
ln := fn.Name() == "println"
var buf bytes.Buffer
for i, arg := range args {
if i > 0 && ln {
buf.WriteRune(' ')
}
buf.WriteString(toString(arg))
}
if ln {
buf.WriteRune('\n')
}
write(1, buf.Bytes())
return nil
case "len":
switch x := args[0].(type) {
case string:
return len(x)
case array:
return len(x)
case *value:
return len((*x).(array))
case []value:
return len(x)
case map[value]value:
return len(x)
case *hashmap:
return x.len()
case chan value:
return len(x)
default:
panic(fmt.Sprintf("len: illegal operand: %T", x))
}
case "cap":
switch x := args[0].(type) {
case array:
return cap(x)
case *value:
return cap((*x).(array))
case []value:
return cap(x)
case chan value:
return cap(x)
default:
panic(fmt.Sprintf("cap: illegal operand: %T", x))
}
case "real":
switch c := args[0].(type) {
case complex64:
return real(c)
case complex128:
return real(c)
default:
panic(fmt.Sprintf("real: illegal operand: %T", c))
}
case "imag":
switch c := args[0].(type) {
case complex64:
return imag(c)
case complex128:
return imag(c)
default:
panic(fmt.Sprintf("imag: illegal operand: %T", c))
}
case "complex":
switch f := args[0].(type) {
case float32:
return complex(f, args[1].(float32))
case float64:
return complex(f, args[1].(float64))
default:
panic(fmt.Sprintf("complex: illegal operand: %T", f))
}
case "panic":
// ssa.Panic handles most cases; this is only for "go
// panic" or "defer panic".
panic(targetPanic{args[0]})
case "recover":
go.tools/ssa: implement correct control flow for recovered panic. A function such as this: func one() (x int) { defer func() { recover() }() x = 1 panic("return") } that combines named return parameters (NRPs) with deferred calls that call recover, may return non-zero values despite the fact it doesn't even contain a return statement. (!) This requires a change to the SSA API: all functions' control-flow graphs now have a second entry point, called Recover, which is the block at which control flow resumes after a recovered panic. The Recover block simply loads the NRPs and returns them. As an optimization, most functions don't need a Recover block, so it is omitted. In fact it is only needed for functions that have NRPs and defer a call to another function that _may_ call recover. Dataflow analysis of SSA now requires extra work, since every may-panic instruction has an implicit control-flow edge to the Recover block. The only dataflow analysis so far implemented is SSA renaming, for which we make the following simplifying assumption: the Recover block only loads the NRPs and returns. This means we don't really need to analyze it, we can just skip the "lifting" of such NRPs. We also special-case the Recover block in the dominance computation. Rejected alternative approaches: - Specifying a Recover block for every defer instruction (like a traditional exception handler). This seemed like excessive generality, since Go programs only need the same degenerate form of Recover block. - Adding an instruction to set the Recover block immediately after the named return values are set up, so that dominance can be computed without special-casing. This didn't seem worth the effort. Interpreter: - This CL completely reimplements the panic/recover/ defer logic in the interpreter. It's clearer and simpler and closer to the model in the spec. - Some runtime panic messages have been changed to be closer to gc's, since tests depend on it. - The interpreter now requires that the runtime.runtimeError type be part of the SSA program. This requires that clients import this package prior to invoking the interpreter. This in turn requires (Importer).ImportPackage(path string), which this CL adds. - All $GOROOT/test/recover{,1,2,3}.go tests are now passing. NB, the bug described in coverage.go (defer/recover in a concatenated init function) remains. Will be fixed in a follow-up. Fixes golang/go#6381 R=gri CC=crawshaw, golang-dev https://golang.org/cl/13844043
2013-10-14 13:38:56 -06:00
return doRecover(caller)
}
panic("unknown built-in: " + fn.Name())
}
func rangeIter(x value, t types.Type) iter {
switch x := x.(type) {
case map[value]value:
// TODO(adonovan): fix: leaks goroutines and channels
// on each incomplete map iteration. We need to open
// up an iteration interface using the
// reflect.(Value).MapKeys machinery.
it := make(mapIter)
go func() {
for k, v := range x {
it <- [2]value{k, v}
}
close(it)
}()
return it
case *hashmap:
// TODO(adonovan): fix: leaks goroutines and channels
// on each incomplete map iteration. We need to open
// up an iteration interface using the
// reflect.(Value).MapKeys machinery.
it := make(mapIter)
go func() {
for _, e := range x.table {
for e != nil {
it <- [2]value{e.key, e.value}
e = e.next
}
}
close(it)
}()
return it
case string:
return &stringIter{Reader: strings.NewReader(x)}
}
panic(fmt.Sprintf("cannot range over %T", x))
}
// widen widens a basic typed value x to the widest type of its
// category, one of:
// bool, int64, uint64, float64, complex128, string.
// This is inefficient but reduces the size of the cross-product of
// cases we have to consider.
//
func widen(x value) value {
switch y := x.(type) {
case bool, int64, uint64, float64, complex128, string, unsafe.Pointer:
return x
case int:
return int64(y)
case int8:
return int64(y)
case int16:
return int64(y)
case int32:
return int64(y)
case uint:
return uint64(y)
case uint8:
return uint64(y)
case uint16:
return uint64(y)
case uint32:
return uint64(y)
case uintptr:
return uint64(y)
case float32:
return float64(y)
case complex64:
return complex128(y)
}
panic(fmt.Sprintf("cannot widen %T", x))
}
// conv converts the value x of type t_src to type t_dst and returns
// the result.
// Possible cases are described with the ssa.Convert operator.
//
func conv(t_dst, t_src types.Type, x value) value {
ut_src := t_src.Underlying()
ut_dst := t_dst.Underlying()
// Destination type is not an "untyped" type.
if b, ok := ut_dst.(*types.Basic); ok && b.Info()&types.IsUntyped != 0 {
panic("oops: conversion to 'untyped' type: " + b.String())
}
// Nor is it an interface type.
if _, ok := ut_dst.(*types.Interface); ok {
if _, ok := ut_src.(*types.Interface); ok {
panic("oops: Convert should be ChangeInterface")
} else {
panic("oops: Convert should be MakeInterface")
}
}
// Remaining conversions:
// + untyped string/number/bool constant to a specific
// representation.
// + conversions between non-complex numeric types.
// + conversions between complex numeric types.
// + integer/[]byte/[]rune -> string.
// + string -> []byte/[]rune.
//
// All are treated the same: first we extract the value to the
// widest representation (int64, uint64, float64, complex128,
// or string), then we convert it to the desired type.
switch ut_src := ut_src.(type) {
case *types.Pointer:
switch ut_dst := ut_dst.(type) {
case *types.Basic:
// *value to unsafe.Pointer?
if ut_dst.Kind() == types.UnsafePointer {
return unsafe.Pointer(x.(*value))
}
}
case *types.Slice:
// []byte or []rune -> string
// TODO(adonovan): fix: type B byte; conv([]B -> string).
switch ut_src.Elem().(*types.Basic).Kind() {
case types.Byte:
x := x.([]value)
b := make([]byte, 0, len(x))
for i := range x {
b = append(b, x[i].(byte))
}
return string(b)
case types.Rune:
x := x.([]value)
r := make([]rune, 0, len(x))
for i := range x {
r = append(r, x[i].(rune))
}
return string(r)
}
case *types.Basic:
x = widen(x)
// integer -> string?
// TODO(adonovan): fix: test integer -> named alias of string.
if ut_src.Info()&types.IsInteger != 0 {
if ut_dst, ok := ut_dst.(*types.Basic); ok && ut_dst.Kind() == types.String {
return string(asInt(x))
}
}
// string -> []rune, []byte or string?
if s, ok := x.(string); ok {
switch ut_dst := ut_dst.(type) {
case *types.Slice:
var res []value
// TODO(adonovan): fix: test named alias of rune, byte.
switch ut_dst.Elem().(*types.Basic).Kind() {
case types.Rune:
for _, r := range []rune(s) {
res = append(res, r)
}
return res
case types.Byte:
for _, b := range []byte(s) {
res = append(res, b)
}
return res
}
case *types.Basic:
if ut_dst.Kind() == types.String {
return x.(string)
}
}
break // fail: no other conversions for string
}
// unsafe.Pointer -> *value
if ut_src.Kind() == types.UnsafePointer {
// TODO(adonovan): this is wrong and cannot
// really be fixed with the current design.
//
// return (*value)(x.(unsafe.Pointer))
// creates a new pointer of a different
// type but the underlying interface value
// knows its "true" type and so cannot be
// meaningfully used through the new pointer.
//
// To make this work, the interpreter needs to
// simulate the memory layout of a real
// compiled implementation.
//
// To at least preserve type-safety, we'll
// just return the zero value of the
// destination type.
return zero(t_dst)
}
// Conversions between complex numeric types?
if ut_src.Info()&types.IsComplex != 0 {
switch ut_dst.(*types.Basic).Kind() {
case types.Complex64:
return complex64(x.(complex128))
case types.Complex128:
return x.(complex128)
}
break // fail: no other conversions for complex
}
// Conversions between non-complex numeric types?
if ut_src.Info()&types.IsNumeric != 0 {
kind := ut_dst.(*types.Basic).Kind()
switch x := x.(type) {
case int64: // signed integer -> numeric?
switch kind {
case types.Int:
return int(x)
case types.Int8:
return int8(x)
case types.Int16:
return int16(x)
case types.Int32:
return int32(x)
case types.Int64:
return int64(x)
case types.Uint:
return uint(x)
case types.Uint8:
return uint8(x)
case types.Uint16:
return uint16(x)
case types.Uint32:
return uint32(x)
case types.Uint64:
return uint64(x)
case types.Uintptr:
return uintptr(x)
case types.Float32:
return float32(x)
case types.Float64:
return float64(x)
}
case uint64: // unsigned integer -> numeric?
switch kind {
case types.Int:
return int(x)
case types.Int8:
return int8(x)
case types.Int16:
return int16(x)
case types.Int32:
return int32(x)
case types.Int64:
return int64(x)
case types.Uint:
return uint(x)
case types.Uint8:
return uint8(x)
case types.Uint16:
return uint16(x)
case types.Uint32:
return uint32(x)
case types.Uint64:
return uint64(x)
case types.Uintptr:
return uintptr(x)
case types.Float32:
return float32(x)
case types.Float64:
return float64(x)
}
case float64: // floating point -> numeric?
switch kind {
case types.Int:
return int(x)
case types.Int8:
return int8(x)
case types.Int16:
return int16(x)
case types.Int32:
return int32(x)
case types.Int64:
return int64(x)
case types.Uint:
return uint(x)
case types.Uint8:
return uint8(x)
case types.Uint16:
return uint16(x)
case types.Uint32:
return uint32(x)
case types.Uint64:
return uint64(x)
case types.Uintptr:
return uintptr(x)
case types.Float32:
return float32(x)
case types.Float64:
return float64(x)
}
}
}
}
panic(fmt.Sprintf("unsupported conversion: %s -> %s, dynamic type %T", t_src, t_dst, x))
}
// checkInterface checks that the method set of x implements the
// interface itype.
// On success it returns "", on failure, an error message.
//
func checkInterface(i *interpreter, itype *types.Interface, x iface) string {
go.tools/ssa: implement correct control flow for recovered panic. A function such as this: func one() (x int) { defer func() { recover() }() x = 1 panic("return") } that combines named return parameters (NRPs) with deferred calls that call recover, may return non-zero values despite the fact it doesn't even contain a return statement. (!) This requires a change to the SSA API: all functions' control-flow graphs now have a second entry point, called Recover, which is the block at which control flow resumes after a recovered panic. The Recover block simply loads the NRPs and returns them. As an optimization, most functions don't need a Recover block, so it is omitted. In fact it is only needed for functions that have NRPs and defer a call to another function that _may_ call recover. Dataflow analysis of SSA now requires extra work, since every may-panic instruction has an implicit control-flow edge to the Recover block. The only dataflow analysis so far implemented is SSA renaming, for which we make the following simplifying assumption: the Recover block only loads the NRPs and returns. This means we don't really need to analyze it, we can just skip the "lifting" of such NRPs. We also special-case the Recover block in the dominance computation. Rejected alternative approaches: - Specifying a Recover block for every defer instruction (like a traditional exception handler). This seemed like excessive generality, since Go programs only need the same degenerate form of Recover block. - Adding an instruction to set the Recover block immediately after the named return values are set up, so that dominance can be computed without special-casing. This didn't seem worth the effort. Interpreter: - This CL completely reimplements the panic/recover/ defer logic in the interpreter. It's clearer and simpler and closer to the model in the spec. - Some runtime panic messages have been changed to be closer to gc's, since tests depend on it. - The interpreter now requires that the runtime.runtimeError type be part of the SSA program. This requires that clients import this package prior to invoking the interpreter. This in turn requires (Importer).ImportPackage(path string), which this CL adds. - All $GOROOT/test/recover{,1,2,3}.go tests are now passing. NB, the bug described in coverage.go (defer/recover in a concatenated init function) remains. Will be fixed in a follow-up. Fixes golang/go#6381 R=gri CC=crawshaw, golang-dev https://golang.org/cl/13844043
2013-10-14 13:38:56 -06:00
if meth, _ := types.MissingMethod(x.t, itype, true); meth != nil {
return fmt.Sprintf("interface conversion: %v is not %v: missing method %s",
x.t, itype, meth.Name())
}
return "" // ok
}