1
0
mirror of https://github.com/golang/go synced 2024-11-19 05:24:42 -07:00
go/ssa/interp/interp_test.go

265 lines
6.9 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !windows,!plan9
package interp_test
import (
"bytes"
"fmt"
"go/build"
"os"
"path/filepath"
"strings"
"testing"
"time"
"code.google.com/p/go.tools/importer"
"code.google.com/p/go.tools/ssa"
"code.google.com/p/go.tools/ssa/interp"
)
// Each line contains a space-separated list of $GOROOT/test/
// filenames comprising the main package of a program.
// They are ordered quickest-first, roughly.
//
// TODO(adonovan): integrate into the $GOROOT/test driver scripts,
// golden file checking, etc.
var gorootTestTests = []string{
"235.go",
"alias1.go",
"chancap.go",
"func5.go",
"func6.go",
"func7.go",
"func8.go",
"helloworld.go",
"varinit.go",
"escape3.go",
"initcomma.go",
"cmp.go",
"compos.go",
"turing.go",
"indirect.go",
"complit.go",
"for.go",
"struct0.go",
"intcvt.go",
"printbig.go",
"deferprint.go",
"escape.go",
"range.go",
"const4.go",
"float_lit.go",
"bigalg.go",
"decl.go",
"if.go",
"named.go",
"bigmap.go",
"func.go",
"reorder2.go",
"closure.go",
"gc.go",
"simassign.go",
"iota.go",
"nilptr2.go",
"goprint.go", // doesn't actually assert anything (cmpout)
"utf.go",
"method.go",
"char_lit.go",
"env.go",
"int_lit.go",
"string_lit.go",
"defer.go",
"typeswitch.go",
"stringrange.go",
"reorder.go",
"method3.go",
"literal.go",
"nul1.go", // doesn't actually assert anything (errorcheckoutput)
"zerodivide.go",
"convert.go",
"convT2X.go",
"initialize.go",
"ddd.go",
"blank.go", // partly disabled
"map.go",
"closedchan.go",
"divide.go",
"rename.go",
"const3.go",
"nil.go",
go.tools/ssa: implement correct control flow for recovered panic. A function such as this: func one() (x int) { defer func() { recover() }() x = 1 panic("return") } that combines named return parameters (NRPs) with deferred calls that call recover, may return non-zero values despite the fact it doesn't even contain a return statement. (!) This requires a change to the SSA API: all functions' control-flow graphs now have a second entry point, called Recover, which is the block at which control flow resumes after a recovered panic. The Recover block simply loads the NRPs and returns them. As an optimization, most functions don't need a Recover block, so it is omitted. In fact it is only needed for functions that have NRPs and defer a call to another function that _may_ call recover. Dataflow analysis of SSA now requires extra work, since every may-panic instruction has an implicit control-flow edge to the Recover block. The only dataflow analysis so far implemented is SSA renaming, for which we make the following simplifying assumption: the Recover block only loads the NRPs and returns. This means we don't really need to analyze it, we can just skip the "lifting" of such NRPs. We also special-case the Recover block in the dominance computation. Rejected alternative approaches: - Specifying a Recover block for every defer instruction (like a traditional exception handler). This seemed like excessive generality, since Go programs only need the same degenerate form of Recover block. - Adding an instruction to set the Recover block immediately after the named return values are set up, so that dominance can be computed without special-casing. This didn't seem worth the effort. Interpreter: - This CL completely reimplements the panic/recover/ defer logic in the interpreter. It's clearer and simpler and closer to the model in the spec. - Some runtime panic messages have been changed to be closer to gc's, since tests depend on it. - The interpreter now requires that the runtime.runtimeError type be part of the SSA program. This requires that clients import this package prior to invoking the interpreter. This in turn requires (Importer).ImportPackage(path string), which this CL adds. - All $GOROOT/test/recover{,1,2,3}.go tests are now passing. NB, the bug described in coverage.go (defer/recover in a concatenated init function) remains. Will be fixed in a follow-up. Fixes golang/go#6381 R=gri CC=crawshaw, golang-dev https://golang.org/cl/13844043
2013-10-14 13:38:56 -06:00
"recover.go", // reflection parts disabled
"recover1.go",
"recover2.go",
"recover3.go",
"typeswitch1.go",
"floatcmp.go",
"crlf.go", // doesn't actually assert anything (runoutput)
// Slow tests follow.
"bom.go", // ~1.7s
"gc1.go", // ~1.7s
"cmplxdivide.go cmplxdivide1.go", // ~2.4s
// Working, but not worth enabling:
// "append.go", // works, but slow (15s).
// "gc2.go", // works, but slow, and cheats on the memory check.
// "sigchld.go", // works, but only on POSIX.
// "peano.go", // works only up to n=9, and slow even then.
// "stack.go", // works, but too slow (~30s) by default.
// "solitaire.go", // works, but too slow (~30s).
// "const.go", // works but for but one bug: constant folder doesn't consider representations.
// "init1.go", // too slow (80s) and not that interesting. Cheats on ReadMemStats check too.
// "rotate.go rotate0.go", // emits source for a test
// "rotate.go rotate1.go", // emits source for a test
// "rotate.go rotate2.go", // emits source for a test
// "rotate.go rotate3.go", // emits source for a test
// "64bit.go", // emits source for a test
// "run.go", // test driver, not a test.
// Typechecker failures:
// "switch.go", // https://code.google.com/p/go/issues/detail?id=5505
// Broken. TODO(adonovan): fix.
// copy.go // very slow; but with N=4 quickly crashes, slice index out of range.
// nilptr.go // interp: V > uintptr not implemented. Slow test, lots of mem
// args.go // works, but requires specific os.Args from the driver.
// index.go // a template, not a real test.
// mallocfin.go // SetFinalizer not implemented.
// TODO(adonovan): add tests from $GOROOT/test/* subtrees:
// bench chan bugs fixedbugs interface ken.
}
// These are files in go.tools/ssa/interp/testdata/.
var testdataTests = []string{
"boundmeth.go",
"coverage.go",
"fieldprom.go",
"ifaceconv.go",
"ifaceprom.go",
"initorder.go",
"methprom.go",
"mrvchain.go",
go.tools/ssa: implement correct control flow for recovered panic. A function such as this: func one() (x int) { defer func() { recover() }() x = 1 panic("return") } that combines named return parameters (NRPs) with deferred calls that call recover, may return non-zero values despite the fact it doesn't even contain a return statement. (!) This requires a change to the SSA API: all functions' control-flow graphs now have a second entry point, called Recover, which is the block at which control flow resumes after a recovered panic. The Recover block simply loads the NRPs and returns them. As an optimization, most functions don't need a Recover block, so it is omitted. In fact it is only needed for functions that have NRPs and defer a call to another function that _may_ call recover. Dataflow analysis of SSA now requires extra work, since every may-panic instruction has an implicit control-flow edge to the Recover block. The only dataflow analysis so far implemented is SSA renaming, for which we make the following simplifying assumption: the Recover block only loads the NRPs and returns. This means we don't really need to analyze it, we can just skip the "lifting" of such NRPs. We also special-case the Recover block in the dominance computation. Rejected alternative approaches: - Specifying a Recover block for every defer instruction (like a traditional exception handler). This seemed like excessive generality, since Go programs only need the same degenerate form of Recover block. - Adding an instruction to set the Recover block immediately after the named return values are set up, so that dominance can be computed without special-casing. This didn't seem worth the effort. Interpreter: - This CL completely reimplements the panic/recover/ defer logic in the interpreter. It's clearer and simpler and closer to the model in the spec. - Some runtime panic messages have been changed to be closer to gc's, since tests depend on it. - The interpreter now requires that the runtime.runtimeError type be part of the SSA program. This requires that clients import this package prior to invoking the interpreter. This in turn requires (Importer).ImportPackage(path string), which this CL adds. - All $GOROOT/test/recover{,1,2,3}.go tests are now passing. NB, the bug described in coverage.go (defer/recover in a concatenated init function) remains. Will be fixed in a follow-up. Fixes golang/go#6381 R=gri CC=crawshaw, golang-dev https://golang.org/cl/13844043
2013-10-14 13:38:56 -06:00
"recover.go",
}
// These are files in $GOROOT/src/pkg/.
// These tests exercise the "testing" package.
var gorootSrcPkgTests = []string{
"unicode/script_test.go",
"unicode/digit_test.go",
"hash/crc32/crc32.go hash/crc32/crc32_generic.go hash/crc32/crc32_test.go",
"path/path.go path/path_test.go",
// TODO(adonovan): figure out the package loading error here:
// "strings.go strings/search.go strings/search_test.go",
}
func run(t *testing.T, dir, input string) bool {
fmt.Printf("Input: %s\n", input)
start := time.Now()
var inputs []string
for _, i := range strings.Split(input, " ") {
inputs = append(inputs, dir+i)
}
imp := importer.New(&importer.Config{Build: &build.Default})
go.tools/importer: generalize command-line syntax. Motivation: pointer analysis tools (like the oracle) want the user to specify a set of initial packages, like 'go test'. This change enables the user to specify a set of packages on the command line using importer.LoadInitialPackages(args). Each argument is interpreted as either: - a comma-separated list of *.go source files together comprising one non-importable ad-hoc package. e.g. "src/pkg/net/http/triv.go" gives us [main]. - an import path, denoting both the imported package and its non-importable external test package, if any. e.g. "fmt" gives us [fmt, fmt_test]. Current type-checker limitations mean that only the first import path may contribute tests: multiple packages augmented by *_test.go files could create import cycles, which 'go test' avoids by building a separate executable for each one. That approach is less attractive for static analysis. Details: (many files touched, but importer.go is the crux) importer: - PackageInfo.Importable boolean indicates whether package is importable. - un-expose Importer.Packages; expose AllPackages() instead. - CreatePackageFromArgs has become LoadInitialPackages. - imports() moved to util.go, renamed importsOf(). - InitialPackagesUsage usage message exported to clients. - the package name for ad-hoc packages now comes from the 'package' decl, not "main". ssa.Program: - added CreatePackages() method - PackagesByPath un-exposed, renamed 'imported'. - expose AllPackages and ImportedPackage accessors. oracle: - describe: explain and workaround a go/types bug. Misc: - Removed various unnecessary error.Error() calls in Printf args. R=crawshaw CC=golang-dev https://golang.org/cl/13579043
2013-09-06 16:13:57 -06:00
// TODO(adonovan): use LoadInitialPackages, then un-export ParseFiles.
files, err := importer.ParseFiles(imp.Fset, ".", inputs...)
if err != nil {
t.Errorf("ssa.ParseFiles(%s) failed: %s", inputs, err.Error())
return false
}
// Print a helpful hint if we don't make it to the end.
var hint string
defer func() {
if hint != "" {
fmt.Println("FAIL")
fmt.Println(hint)
} else {
fmt.Println("PASS")
}
interp.CapturedOutput = nil
}()
hint = fmt.Sprintf("To dump SSA representation, run:\n%% go build code.google.com/p/go.tools/cmd/ssadump && ./ssadump -build=CFP %s\n", input)
mainInfo := imp.CreatePackage("main", files...)
go.tools/ssa: implement correct control flow for recovered panic. A function such as this: func one() (x int) { defer func() { recover() }() x = 1 panic("return") } that combines named return parameters (NRPs) with deferred calls that call recover, may return non-zero values despite the fact it doesn't even contain a return statement. (!) This requires a change to the SSA API: all functions' control-flow graphs now have a second entry point, called Recover, which is the block at which control flow resumes after a recovered panic. The Recover block simply loads the NRPs and returns them. As an optimization, most functions don't need a Recover block, so it is omitted. In fact it is only needed for functions that have NRPs and defer a call to another function that _may_ call recover. Dataflow analysis of SSA now requires extra work, since every may-panic instruction has an implicit control-flow edge to the Recover block. The only dataflow analysis so far implemented is SSA renaming, for which we make the following simplifying assumption: the Recover block only loads the NRPs and returns. This means we don't really need to analyze it, we can just skip the "lifting" of such NRPs. We also special-case the Recover block in the dominance computation. Rejected alternative approaches: - Specifying a Recover block for every defer instruction (like a traditional exception handler). This seemed like excessive generality, since Go programs only need the same degenerate form of Recover block. - Adding an instruction to set the Recover block immediately after the named return values are set up, so that dominance can be computed without special-casing. This didn't seem worth the effort. Interpreter: - This CL completely reimplements the panic/recover/ defer logic in the interpreter. It's clearer and simpler and closer to the model in the spec. - Some runtime panic messages have been changed to be closer to gc's, since tests depend on it. - The interpreter now requires that the runtime.runtimeError type be part of the SSA program. This requires that clients import this package prior to invoking the interpreter. This in turn requires (Importer).ImportPackage(path string), which this CL adds. - All $GOROOT/test/recover{,1,2,3}.go tests are now passing. NB, the bug described in coverage.go (defer/recover in a concatenated init function) remains. Will be fixed in a follow-up. Fixes golang/go#6381 R=gri CC=crawshaw, golang-dev https://golang.org/cl/13844043
2013-10-14 13:38:56 -06:00
if _, err := imp.LoadPackage("runtime"); err != nil {
t.Errorf("LoadPackage(runtime) failed: %s", err)
}
prog := ssa.NewProgram(imp.Fset, ssa.SanityCheckFunctions)
go.tools/importer: generalize command-line syntax. Motivation: pointer analysis tools (like the oracle) want the user to specify a set of initial packages, like 'go test'. This change enables the user to specify a set of packages on the command line using importer.LoadInitialPackages(args). Each argument is interpreted as either: - a comma-separated list of *.go source files together comprising one non-importable ad-hoc package. e.g. "src/pkg/net/http/triv.go" gives us [main]. - an import path, denoting both the imported package and its non-importable external test package, if any. e.g. "fmt" gives us [fmt, fmt_test]. Current type-checker limitations mean that only the first import path may contribute tests: multiple packages augmented by *_test.go files could create import cycles, which 'go test' avoids by building a separate executable for each one. That approach is less attractive for static analysis. Details: (many files touched, but importer.go is the crux) importer: - PackageInfo.Importable boolean indicates whether package is importable. - un-expose Importer.Packages; expose AllPackages() instead. - CreatePackageFromArgs has become LoadInitialPackages. - imports() moved to util.go, renamed importsOf(). - InitialPackagesUsage usage message exported to clients. - the package name for ad-hoc packages now comes from the 'package' decl, not "main". ssa.Program: - added CreatePackages() method - PackagesByPath un-exposed, renamed 'imported'. - expose AllPackages and ImportedPackage accessors. oracle: - describe: explain and workaround a go/types bug. Misc: - Removed various unnecessary error.Error() calls in Printf args. R=crawshaw CC=golang-dev https://golang.org/cl/13579043
2013-09-06 16:13:57 -06:00
if err := prog.CreatePackages(imp); err != nil {
t.Errorf("CreatePackages failed: %s", err)
return false
}
prog.BuildAll()
go.tools/importer: generalize command-line syntax. Motivation: pointer analysis tools (like the oracle) want the user to specify a set of initial packages, like 'go test'. This change enables the user to specify a set of packages on the command line using importer.LoadInitialPackages(args). Each argument is interpreted as either: - a comma-separated list of *.go source files together comprising one non-importable ad-hoc package. e.g. "src/pkg/net/http/triv.go" gives us [main]. - an import path, denoting both the imported package and its non-importable external test package, if any. e.g. "fmt" gives us [fmt, fmt_test]. Current type-checker limitations mean that only the first import path may contribute tests: multiple packages augmented by *_test.go files could create import cycles, which 'go test' avoids by building a separate executable for each one. That approach is less attractive for static analysis. Details: (many files touched, but importer.go is the crux) importer: - PackageInfo.Importable boolean indicates whether package is importable. - un-expose Importer.Packages; expose AllPackages() instead. - CreatePackageFromArgs has become LoadInitialPackages. - imports() moved to util.go, renamed importsOf(). - InitialPackagesUsage usage message exported to clients. - the package name for ad-hoc packages now comes from the 'package' decl, not "main". ssa.Program: - added CreatePackages() method - PackagesByPath un-exposed, renamed 'imported'. - expose AllPackages and ImportedPackage accessors. oracle: - describe: explain and workaround a go/types bug. Misc: - Removed various unnecessary error.Error() calls in Printf args. R=crawshaw CC=golang-dev https://golang.org/cl/13579043
2013-09-06 16:13:57 -06:00
mainPkg := prog.Package(mainInfo.Pkg)
mainPkg.CreateTestMainFunction() // (no-op if main already exists)
var out bytes.Buffer
interp.CapturedOutput = &out
hint = fmt.Sprintf("To trace execution, run:\n%% go build code.google.com/p/go.tools/cmd/ssadump && ./ssadump -build=C -run --interp=T %s\n", input)
if exitCode := interp.Interpret(mainPkg, 0, inputs[0], []string{}); exitCode != 0 {
t.Errorf("interp.Interpret(%s) exited with code %d, want zero", inputs, exitCode)
return false
}
// $GOROOT/tests are considered a failure if they print "BUG".
if strings.Contains(out.String(), "BUG") {
t.Errorf("interp.Interpret(%s) exited zero but output contained 'BUG'", inputs)
return false
}
hint = "" // call off the hounds
if false {
fmt.Println(input, time.Since(start)) // test profiling
}
return true
}
const slash = string(os.PathSeparator)
// TestInterp runs the interpreter on a selection of small Go programs.
func TestInterp(t *testing.T) {
var failures []string
for _, input := range testdataTests {
if !run(t, "testdata"+slash, input) {
failures = append(failures, input)
}
}
if !testing.Short() {
for _, input := range gorootTestTests {
if !run(t, filepath.Join(build.Default.GOROOT, "test")+slash, input) {
failures = append(failures, input)
}
}
for _, input := range gorootSrcPkgTests {
if !run(t, filepath.Join(build.Default.GOROOT, "src/pkg")+slash, input) {
failures = append(failures, input)
}
}
}
if failures != nil {
fmt.Println("The following tests failed:")
for _, f := range failures {
fmt.Printf("\t%s\n", f)
}
}
}