1
0
mirror of https://github.com/golang/go synced 2024-11-05 20:36:10 -07:00
go/internal/lsp/cache/analysis.go

393 lines
12 KiB
Go
Raw Normal View History

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cache
import (
"context"
"fmt"
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
"go/ast"
"go/types"
"reflect"
"sort"
"sync"
"golang.org/x/sync/errgroup"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/internal/analysisinternal"
"golang.org/x/tools/internal/event"
"golang.org/x/tools/internal/lsp/debug/tag"
"golang.org/x/tools/internal/lsp/source"
"golang.org/x/tools/internal/memoize"
errors "golang.org/x/xerrors"
)
func (s *snapshot) Analyze(ctx context.Context, id string, analyzers ...*analysis.Analyzer) ([]*source.Error, error) {
var roots []*actionHandle
for _, a := range analyzers {
ah, err := s.actionHandle(ctx, packageID(id), a)
if err != nil {
return nil, err
}
roots = append(roots, ah)
}
// Check if the context has been canceled before running the analyses.
if ctx.Err() != nil {
return nil, ctx.Err()
}
var results []*source.Error
for _, ah := range roots {
diagnostics, _, err := ah.analyze(ctx, s)
if err != nil {
return nil, err
}
results = append(results, diagnostics...)
}
return results, nil
}
type actionHandleKey string
// An action represents one unit of analysis work: the application of
// one analysis to one package. Actions form a DAG, both within a
// package (as different analyzers are applied, either in sequence or
// parallel), and across packages (as dependencies are analyzed).
type actionHandle struct {
handle *memoize.Handle
analyzer *analysis.Analyzer
pkg *pkg
}
type actionData struct {
diagnostics []*source.Error
result interface{}
objectFacts map[objectFactKey]analysis.Fact
packageFacts map[packageFactKey]analysis.Fact
err error
}
type objectFactKey struct {
obj types.Object
typ reflect.Type
}
type packageFactKey struct {
pkg *types.Package
typ reflect.Type
}
func (s *snapshot) actionHandle(ctx context.Context, id packageID, a *analysis.Analyzer) (*actionHandle, error) {
ph := s.getPackage(id, source.ParseFull)
if ph == nil {
return nil, errors.Errorf("no package for %s", id)
}
act := s.getActionHandle(id, ph.mode, a)
if act != nil {
return act, nil
}
if len(ph.key) == 0 {
return nil, errors.Errorf("no key for package %s", id)
}
pkg, err := ph.check(ctx, s)
if err != nil {
return nil, err
}
act = &actionHandle{
analyzer: a,
pkg: pkg,
}
var deps []*actionHandle
// Add a dependency on each required analyzers.
for _, req := range a.Requires {
reqActionHandle, err := s.actionHandle(ctx, id, req)
if err != nil {
return nil, err
}
deps = append(deps, reqActionHandle)
}
// TODO(golang/go#35089): Re-enable this when we doesn't use ParseExported
// mode for dependencies. In the meantime, disable analysis for dependencies,
// since we don't get anything useful out of it.
if false {
// An analysis that consumes/produces facts
// must run on the package's dependencies too.
if len(a.FactTypes) > 0 {
importIDs := make([]string, 0, len(ph.m.deps))
for _, importID := range ph.m.deps {
importIDs = append(importIDs, string(importID))
}
sort.Strings(importIDs) // for determinism
for _, importID := range importIDs {
depActionHandle, err := s.actionHandle(ctx, packageID(importID), a)
if err != nil {
return nil, err
}
deps = append(deps, depActionHandle)
}
}
}
h := s.view.session.cache.store.Bind(buildActionKey(a, ph), func(ctx context.Context, arg memoize.Arg) interface{} {
snapshot := arg.(*snapshot)
// Analyze dependencies first.
results, err := execAll(ctx, snapshot, deps)
if err != nil {
return &actionData{
err: err,
}
}
return runAnalysis(ctx, snapshot, a, pkg, results)
})
act.handle = h
act = s.addActionHandle(act)
return act, nil
}
func (act *actionHandle) analyze(ctx context.Context, snapshot *snapshot) ([]*source.Error, interface{}, error) {
v, err := act.handle.Get(ctx, snapshot)
if v == nil {
return nil, nil, err
}
data, ok := v.(*actionData)
if !ok {
return nil, nil, errors.Errorf("unexpected type for %s:%s", act.pkg.ID(), act.analyzer.Name)
}
if data == nil {
return nil, nil, errors.Errorf("unexpected nil analysis for %s:%s", act.pkg.ID(), act.analyzer.Name)
}
return data.diagnostics, data.result, data.err
}
func buildActionKey(a *analysis.Analyzer, ph *packageHandle) actionHandleKey {
return actionHandleKey(hashContents([]byte(fmt.Sprintf("%p %s", a, string(ph.key)))))
}
func (act *actionHandle) String() string {
return fmt.Sprintf("%s@%s", act.analyzer, act.pkg.PkgPath())
}
func execAll(ctx context.Context, snapshot *snapshot, actions []*actionHandle) (map[*actionHandle]*actionData, error) {
var mu sync.Mutex
results := make(map[*actionHandle]*actionData)
g, ctx := errgroup.WithContext(ctx)
for _, act := range actions {
act := act
g.Go(func() error {
v, err := act.handle.Get(ctx, snapshot)
if err != nil {
return err
}
data, ok := v.(*actionData)
if !ok {
return errors.Errorf("unexpected type for %s: %T", act, v)
}
mu.Lock()
defer mu.Unlock()
results[act] = data
return nil
})
}
return results, g.Wait()
}
func runAnalysis(ctx context.Context, snapshot *snapshot, analyzer *analysis.Analyzer, pkg *pkg, deps map[*actionHandle]*actionData) (data *actionData) {
data = &actionData{
objectFacts: make(map[objectFactKey]analysis.Fact),
packageFacts: make(map[packageFactKey]analysis.Fact),
}
defer func() {
if r := recover(); r != nil {
event.Log(ctx, fmt.Sprintf("analysis panicked: %s", r), tag.Package.Of(pkg.PkgPath()))
data.err = errors.Errorf("analysis %s for package %s panicked: %v", analyzer.Name, pkg.PkgPath(), r)
}
}()
// Plumb the output values of the dependencies
// into the inputs of this action. Also facts.
inputs := make(map[*analysis.Analyzer]interface{})
for depHandle, depData := range deps {
if depHandle.pkg == pkg {
// Same package, different analysis (horizontal edge):
// in-memory outputs of prerequisite analyzers
// become inputs to this analysis pass.
inputs[depHandle.analyzer] = depData.result
} else if depHandle.analyzer == analyzer { // (always true)
// Same analysis, different package (vertical edge):
// serialized facts produced by prerequisite analysis
// become available to this analysis pass.
for key, fact := range depData.objectFacts {
// Filter out facts related to objects
// that are irrelevant downstream
// (equivalently: not in the compiler export data).
if !exportedFrom(key.obj, depHandle.pkg.types) {
continue
}
data.objectFacts[key] = fact
}
for key, fact := range depData.packageFacts {
// TODO: filter out facts that belong to
// packages not mentioned in the export data
// to prevent side channels.
data.packageFacts[key] = fact
}
}
}
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
var syntax []*ast.File
for _, cgf := range pkg.compiledGoFiles {
syntax = append(syntax, cgf.File)
}
var diagnostics []*analysis.Diagnostic
// Run the analysis.
pass := &analysis.Pass{
Analyzer: analyzer,
Fset: snapshot.view.session.cache.fset,
internal/lsp: replace ParseGoHandle with concrete data ParseGoHandles serve two purposes: they pin cache entries so that redundant calculations are cached, and they allow users to obtain the actual parsed AST. The former is an implementation detail, and the latter turns out to just be an annoyance. Parsed Go files are obtained from two places. By far the most common is from a type checked package. But a type checked package must by definition have already parsed all the files it contains, so the PGH is already computed and cannot have failed. Type checked packages can simply return the parsed file without requiring a separate Check operation. We do want to pin the cache entries in this case, which I've done by holding on to the PGH in cache.pkg. There are some cases where we directly parse a file, such as for the FoldingRange LSP call, which doesn't need type information. Those parses can actually fail, so we do need an error check. But we don't need the PGH; in all cases we are immediately using and discarding it. So it turns out we don't actually need the PGH type at all, at least not in the public API. Instead, we can pass around a concrete struct that has the various pieces of data directly available. This uncovered a bug in typeCheck: it should fail if it encounters any real errors. Change-Id: I203bf2dd79d5d65c01392d69c2cf4f7744fde7fc Reviewed-on: https://go-review.googlesource.com/c/tools/+/244021 Run-TryBot: Heschi Kreinick <heschi@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2020-07-21 13:15:06 -06:00
Files: syntax,
Pkg: pkg.GetTypes(),
TypesInfo: pkg.GetTypesInfo(),
TypesSizes: pkg.GetTypesSizes(),
ResultOf: inputs,
Report: func(d analysis.Diagnostic) {
// Prefix the diagnostic category with the analyzer's name.
if d.Category == "" {
d.Category = analyzer.Name
} else {
d.Category = analyzer.Name + "." + d.Category
}
diagnostics = append(diagnostics, &d)
},
ImportObjectFact: func(obj types.Object, ptr analysis.Fact) bool {
if obj == nil {
panic("nil object")
}
key := objectFactKey{obj, factType(ptr)}
if v, ok := data.objectFacts[key]; ok {
reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
return true
}
return false
},
ExportObjectFact: func(obj types.Object, fact analysis.Fact) {
if obj.Pkg() != pkg.types {
panic(fmt.Sprintf("internal error: in analysis %s of package %s: Fact.Set(%s, %T): can't set facts on objects belonging another package",
analyzer, pkg.ID(), obj, fact))
}
key := objectFactKey{obj, factType(fact)}
data.objectFacts[key] = fact // clobber any existing entry
},
ImportPackageFact: func(pkg *types.Package, ptr analysis.Fact) bool {
if pkg == nil {
panic("nil package")
}
key := packageFactKey{pkg, factType(ptr)}
if v, ok := data.packageFacts[key]; ok {
reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
return true
}
return false
},
ExportPackageFact: func(fact analysis.Fact) {
key := packageFactKey{pkg.types, factType(fact)}
data.packageFacts[key] = fact // clobber any existing entry
},
AllObjectFacts: func() []analysis.ObjectFact {
facts := make([]analysis.ObjectFact, 0, len(data.objectFacts))
for k := range data.objectFacts {
facts = append(facts, analysis.ObjectFact{Object: k.obj, Fact: data.objectFacts[k]})
}
return facts
},
AllPackageFacts: func() []analysis.PackageFact {
facts := make([]analysis.PackageFact, 0, len(data.packageFacts))
for k := range data.packageFacts {
facts = append(facts, analysis.PackageFact{Package: k.pkg, Fact: data.packageFacts[k]})
}
return facts
},
}
analysisinternal.SetTypeErrors(pass, pkg.typeErrors)
if pkg.IsIllTyped() {
data.err = errors.Errorf("analysis skipped due to errors in package: %v", pkg.GetErrors())
return data
}
data.result, data.err = pass.Analyzer.Run(pass)
if data.err != nil {
return data
}
if got, want := reflect.TypeOf(data.result), pass.Analyzer.ResultType; got != want {
data.err = errors.Errorf(
"internal error: on package %s, analyzer %s returned a result of type %v, but declared ResultType %v",
pass.Pkg.Path(), pass.Analyzer, got, want)
return data
}
// disallow calls after Run
pass.ExportObjectFact = func(obj types.Object, fact analysis.Fact) {
panic(fmt.Sprintf("%s:%s: Pass.ExportObjectFact(%s, %T) called after Run", analyzer.Name, pkg.PkgPath(), obj, fact))
}
pass.ExportPackageFact = func(fact analysis.Fact) {
panic(fmt.Sprintf("%s:%s: Pass.ExportPackageFact(%T) called after Run", analyzer.Name, pkg.PkgPath(), fact))
}
for _, diag := range diagnostics {
srcErr, err := sourceError(ctx, snapshot, pkg, diag)
if err != nil {
event.Error(ctx, "unable to compute analysis error position", err, tag.Category.Of(diag.Category), tag.Package.Of(pkg.ID()))
continue
}
if ctx.Err() != nil {
data.err = ctx.Err()
return data
}
data.diagnostics = append(data.diagnostics, srcErr)
}
return data
}
// exportedFrom reports whether obj may be visible to a package that imports pkg.
// This includes not just the exported members of pkg, but also unexported
// constants, types, fields, and methods, perhaps belonging to oether packages,
// that find there way into the API.
// This is an overapproximation of the more accurate approach used by
// gc export data, which walks the type graph, but it's much simpler.
//
// TODO(adonovan): do more accurate filtering by walking the type graph.
func exportedFrom(obj types.Object, pkg *types.Package) bool {
switch obj := obj.(type) {
case *types.Func:
return obj.Exported() && obj.Pkg() == pkg ||
obj.Type().(*types.Signature).Recv() != nil
case *types.Var:
return obj.Exported() && obj.Pkg() == pkg ||
obj.IsField()
case *types.TypeName, *types.Const:
return true
}
return false // Nil, Builtin, Label, or PkgName
}
func factType(fact analysis.Fact) reflect.Type {
t := reflect.TypeOf(fact)
if t.Kind() != reflect.Ptr {
panic(fmt.Sprintf("invalid Fact type: got %T, want pointer", t))
}
return t
}