1
0
mirror of https://github.com/golang/go synced 2024-11-20 05:24:41 -07:00
go/src/runtime/asm_power64x.s

1046 lines
23 KiB
ArmAsm
Raw Normal View History

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build power64 power64le
#include "zasm_GOOS_GOARCH.h"
#include "funcdata.h"
#include "../../cmd/ld/textflag.h"
TEXT _rt0_go(SB),NOSPLIT,$0
// initialize essential registers
BL runtime·reginit(SB)
SUB $24, R1
MOVW R3, 8(R1) // argc
MOVD R4, 16(R1) // argv
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVD $runtime·g0(SB), g
MOVD $(-64*1024), R31
ADD R31, R1, R3
MOVD R3, g_stackguard(g)
MOVD R3, g_stackguard0(g)
MOVD R1, g_stackbase(g)
// TODO: if there is a _cgo_init, call it.
// TODO: add TLS
// set the per-goroutine and per-mach "registers"
MOVD $runtime·m0(SB), R3
// save m->g0 = g0
MOVD g, m_g0(R3)
// save m0 to g0->m
MOVD R3, g_m(g)
BL runtime·check(SB)
// args are already prepared
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·hashinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVD $runtime·main·f(SB), R3 // entry
MOVDU R3, -8(R1)
MOVDU R0, -8(R1)
MOVDU R0, -8(R1)
ARGSIZE(24)
BL runtime·newproc(SB)
ARGSIZE(-1)
ADD $24, R1
// start this M
BL runtime·mstart(SB)
MOVD R0, 1(R0)
RETURN
DATA runtime·main·f+0(SB)/8,$runtime·main(SB)
GLOBL runtime·main·f(SB),RODATA,$8
TEXT runtime·breakpoint(SB),NOSPLIT,$-8-0
MOVD R0, 2(R0) // TODO: TD
RETURN
TEXT runtime·asminit(SB),NOSPLIT,$-8-0
RETURN
TEXT runtime·reginit(SB),NOSPLIT,$-8-0
// set R0 to zero, it's expected by the toolchain
XOR R0, R0
// initialize essential FP registers
FMOVD $4503601774854144.0, F27
FMOVD $0.5, F29
FSUB F29, F29, F28
FADD F29, F29, F30
FADD F30, F30, F31
RETURN
/*
* go-routine
*/
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT, $-8-8
MOVD gobuf+0(FP), R3
MOVD R1, gobuf_sp(R3)
MOVD LR, R31
MOVD R31, gobuf_pc(R3)
MOVD g, gobuf_g(R3)
MOVD R0, gobuf_lr(R3)
MOVD R0, gobuf_ret(R3)
MOVD R0, gobuf_ctxt(R3)
RETURN
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $-8-8
MOVD gobuf+0(FP), R5
MOVD gobuf_g(R5), g // make sure g is not nil
MOVD 0(g), R4
MOVD gobuf_sp(R5), R1
MOVD gobuf_lr(R5), R31
MOVD R31, LR
MOVD gobuf_ret(R5), R3
MOVD gobuf_ctxt(R5), R11
MOVD R0, gobuf_sp(R5)
MOVD R0, gobuf_ret(R5)
MOVD R0, gobuf_lr(R5)
MOVD R0, gobuf_ctxt(R5)
CMP R0, R0 // set condition codes for == test, needed by stack split
MOVD gobuf_pc(R5), R31
MOVD R31, CTR
BR (CTR)
// void mcall(void (*fn)(G*))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT, $-8-8
// Save caller state in g->sched
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD LR, R31
MOVD R31, (g_sched+gobuf_pc)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// Switch to m->g0 & its stack, call fn.
MOVD g, R3
MOVD g_m(g), R8
MOVD m_g0(R8), g
CMP g, R3
BNE 2(PC)
BR runtime·badmcall(SB)
MOVD fn+0(FP), R4
MOVD R4, CTR
MOVD (g_sched+gobuf_sp)(g), R1
MOVDU R3, -8(R1)
MOVDU R0, -8(R1)
BL (CTR)
BR runtime·badmcall2(SB)
// switchtoM is a dummy routine that onM leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the M stack because the one at the top of
// the M stack terminates the stack walk (see topofstack()).
TEXT runtime·switchtoM(SB), NOSPLIT, $0-8
UNDEF
BL (LR) // make sure this function is not leaf
RETURN
// void onM(void (*fn)())
// calls fn() on the M stack.
// switches to the M stack if not already on it, and
// switches back when fn() returns.
TEXT runtime·onM(SB), NOSPLIT, $0-8
MOVD fn+0(FP), R3 // R3 = fn
MOVD R3, CTR
MOVD g_m(g), R4 // R4 = m
MOVD m_g0(R4), R5 // R5 = g0
CMP g, R5
BEQ onm
// save our state in g->sched. Pretend to
// be switchtoM if the G stack is scanned.
MOVD $runtime·switchtoM(SB), R6
ADD $8, R6 // get past prologue
MOVD R6, (g_sched+gobuf_pc)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// switch to g0
MOVD R5, g
MOVD (g_sched+gobuf_sp)(g), R1
// call target function
ARGSIZE(0)
BL (CTR)
// switch back to g
MOVD g_m(g), R3
MOVD m_curg(R3), g
MOVD (g_sched+gobuf_sp)(g), R1
MOVD R0, (g_sched+gobuf_sp)(g)
RETURN
onm:
// already on m stack, just call directly
BL (CTR)
RETURN
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3: framesize, R4: argsize, R5: LR
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT,$-8-0
// Cannot grow scheduler stack (m->g0).
MOVD g_m(g), R7
MOVD m_g0(R7), R8
CMP g, R8
BNE 2(PC)
BL runtime·abort(SB)
MOVW R3, m_moreframesize(R7)
MOVW R4, m_moreargsize(R7)
// Called from f.
// Set g->sched to context in f.
MOVD R11, (g_sched+gobuf_ctxt)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD LR, R8
MOVD R8, (g_sched+gobuf_pc)(g)
MOVD R5, (g_sched+gobuf_lr)(g)
// Called from f.
// Set m->morebuf to f's caller.
MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC
MOVD R1, (m_morebuf+gobuf_sp)(R7) // f's caller's SP
MOVD $8(R1), R8 // f's argument pointer
MOVD R8, m_moreargp(R7)
MOVD g, (m_morebuf+gobuf_g)(R7)
// Call newstack on m->g0's stack.
MOVD m_g0(R7), g
MOVD (g_sched+gobuf_sp)(g), R1
BL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
UNDEF
TEXT runtime·morestack_noctxt(SB),NOSPLIT,$-8-0
MOVD R0, R11
BR runtime·morestack(SB)
// Called from panic. Mimics morestack,
// reuses stack growth code to create a frame
// with the desired args running the desired function.
//
// func call(fn *byte, arg *byte, argsize uint32).
TEXT runtime·newstackcall(SB), NOSPLIT, $-8-20
// Save our caller's state as the PC and SP to restore when
// returning from f.
MOVD g_m(g), R5
MOVD LR, R31
MOVD R31, (m_morebuf+gobuf_pc)(R5) // our caller's PC
MOVD R1, (m_morebuf+gobuf_sp)(R5) // our caller's SP
MOVD g, (m_morebuf+gobuf_g)(R5)
// Save our own state as the PC and SP to restore if this
// goroutine needs to be restarted.
MOVD $runtime·newstackcall(SB), R7
MOVD R7, (g_sched+gobuf_pc)(g)
MOVD LR, R31
MOVD R31, (g_sched+gobuf_lr)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
// Set up morestack arguments to call f on a new stack.
// We set f's frame size to 1, as a hint to newstack that
// this is a call from runtime.newstackcall.
// If it turns out that f needs a larger frame than the
// default stack, f's usual stack growth prolog will
// allocate a new segment (and recopy the arguments).
MOVD fn+0(FP), R7
MOVD args+8(FP), R8
MOVW n+16(FP), R9
MOVD R7, m_cret(R5)
MOVD R8, m_moreargp(R5)
MOVW R9, m_moreargsize(R5)
MOVD $1, R10
MOVW R10, m_moreframesize(R5)
// call newstack on m->g0's stack
MOVD m_g0(R5), g
MOVD (g_sched+gobuf_sp)(g), R1
BR runtime·newstack(SB)
// reflect·call: call a function with the given argument list
// func call(f *FuncVal, arg *byte, argsize uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
#define DISPATCH(NAME,MAXSIZE) \
MOVD $MAXSIZE, R31; \
CMP R3, R31; \
BGT 4(PC); \
MOVD $runtime·NAME(SB), R31; \
MOVD R31, CTR; \
BR (CTR)
// Note: can't just "BR runtime·NAME(SB)" - bad inlining results.
TEXT reflect·call(SB), NOSPLIT, $-8-24
MOVW argsize+16(FP), R3
DISPATCH(call16, 16)
DISPATCH(call32, 32)
DISPATCH(call64, 64)
DISPATCH(call128, 128)
DISPATCH(call256, 256)
DISPATCH(call512, 512)
DISPATCH(call1024, 1024)
DISPATCH(call2048, 2048)
DISPATCH(call4096, 4096)
DISPATCH(call8192, 8192)
DISPATCH(call16384, 16384)
DISPATCH(call32768, 32768)
DISPATCH(call65536, 65536)
DISPATCH(call131072, 131072)
DISPATCH(call262144, 262144)
DISPATCH(call524288, 524288)
DISPATCH(call1048576, 1048576)
DISPATCH(call2097152, 2097152)
DISPATCH(call4194304, 4194304)
DISPATCH(call8388608, 8388608)
DISPATCH(call16777216, 16777216)
DISPATCH(call33554432, 33554432)
DISPATCH(call67108864, 67108864)
DISPATCH(call134217728, 134217728)
DISPATCH(call268435456, 268435456)
DISPATCH(call536870912, 536870912)
DISPATCH(call1073741824, 1073741824)
MOVD $runtime·badreflectcall(SB), R31
MOVD R31, CTR
BR (CTR)
// Argument map for the callXX frames. Each has one
// stack map (for the single call) with 3 arguments.
DATA gcargs_reflectcall<>+0x00(SB)/4, $1 // 1 stackmap
DATA gcargs_reflectcall<>+0x04(SB)/4, $6 // 3 args
DATA gcargs_reflectcall<>+0x08(SB)/4, $(const_BitsPointer+(const_BitsPointer<<2)+(const_BitsScalar<<4))
GLOBL gcargs_reflectcall<>(SB),RODATA,$12
// callXX frames have no locals
DATA gclocals_reflectcall<>+0x00(SB)/4, $1 // 1 stackmap
DATA gclocals_reflectcall<>+0x04(SB)/4, $0 // 0 locals
GLOBL gclocals_reflectcall<>(SB),RODATA,$8
#define CALLFN(NAME,MAXSIZE) \
TEXT runtime·NAME(SB), WRAPPER, $MAXSIZE-24; \
FUNCDATA $FUNCDATA_ArgsPointerMaps,gcargs_reflectcall<>(SB); \
FUNCDATA $FUNCDATA_LocalsPointerMaps,gclocals_reflectcall<>(SB);\
/* copy arguments to stack */ \
MOVD argptr+8(FP), R3; \
MOVW argsize+16(FP), R4; \
MOVD R1, R5; \
ADD $(8-1), R5; \
SUB $1, R3; \
ADD R5, R4; \
CMP R5, R4; \
BEQ 4(PC); \
MOVBZU 1(R3), R6; \
MOVBZU R6, 1(R5); \
BR -4(PC); \
/* call function */ \
MOVD f+0(FP), R11; \
MOVD (R11), R31; \
MOVD R31, CTR; \
PCDATA $PCDATA_StackMapIndex, $0; \
BL (CTR); \
/* copy return values back */ \
MOVD argptr+8(FP), R3; \
MOVW argsize+16(FP), R4; \
MOVW retoffset+20(FP), R6; \
MOVD R1, R5; \
ADD R6, R5; \
ADD R6, R3; \
SUB R6, R4; \
ADD $(8-1), R5; \
SUB $1, R3; \
ADD R5, R4; \
CMP R5, R4; \
BEQ 4(PC); \
MOVBZU 1(R5), R6; \
MOVBZU R6, 1(R3); \
BR -4(PC); \
RETURN
CALLFN(call16, 16)
CALLFN(call32, 32)
CALLFN(call64, 64)
CALLFN(call128, 128)
CALLFN(call256, 256)
CALLFN(call512, 512)
CALLFN(call1024, 1024)
CALLFN(call2048, 2048)
CALLFN(call4096, 4096)
CALLFN(call8192, 8192)
CALLFN(call16384, 16384)
CALLFN(call32768, 32768)
CALLFN(call65536, 65536)
CALLFN(call131072, 131072)
CALLFN(call262144, 262144)
CALLFN(call524288, 524288)
CALLFN(call1048576, 1048576)
CALLFN(call2097152, 2097152)
CALLFN(call4194304, 4194304)
CALLFN(call8388608, 8388608)
CALLFN(call16777216, 16777216)
CALLFN(call33554432, 33554432)
CALLFN(call67108864, 67108864)
CALLFN(call134217728, 134217728)
CALLFN(call268435456, 268435456)
CALLFN(call536870912, 536870912)
CALLFN(call1073741824, 1073741824)
// Return point when leaving stack.
//
// Lessstack can appear in stack traces for the same reason
// as morestack; in that context, it has 0 arguments.
TEXT runtime·lessstack(SB), NOSPLIT, $-8-0
// Save return value in m->cret
MOVD g_m(g), R5
MOVD R3, m_cret(R5)
// Call oldstack on m->g0's stack.
MOVD m_g0(R5), g
MOVD (g_sched+gobuf_sp)(g), R1
BL runtime·oldstack(SB)
// bool cas(int32 *val, int32 old, int32 new)
// Atomically:
// if(*val == old){
// *val = new;
// return 1;
// } else
// return 0;
TEXT runtime·cas(SB), NOSPLIT, $0-16
MOVD p+0(FP), R3
MOVW old+8(FP), R4
MOVW new+12(FP), R5
SYNC
LWAR (R3), R6
CMPW R6, R4
BNE 7(PC)
STWCCC R5, (R3)
BNE -5(PC)
MOVD $1, R3
SYNC
ISYNC
RETURN
MOVD $0, R3
BR -4(PC)
// bool runtime·cas64(uint64 *val, uint64 old, uint64 new)
// Atomically:
// if(*val == *old){
// *val = new;
// return 1;
// } else {
// return 0;
// }
TEXT runtime·cas64(SB), NOSPLIT, $0-24
MOVD p+0(FP), R3
MOVD old+8(FP), R4
MOVD new+16(FP), R5
SYNC
LDAR (R3), R6
CMP R6, R4
BNE 7(PC)
STDCCC R5, (R3)
BNE -5(PC)
MOVD $1, R3
SYNC
ISYNC
RETURN
MOVD $0, R3
BR -4(PC)
// bool casp(void **val, void *old, void *new)
// Atomically:
// if(*val == old){
// *val = new;
// return 1;
// } else
// return 0;
TEXT runtime·casp(SB), NOSPLIT, $0-24
BR runtime·cas64(SB)
// uint32 xadd(uint32 volatile *val, int32 delta)
// Atomically:
// *val += delta;
// return *val;
TEXT runtime·xadd(SB), NOSPLIT, $0-12
MOVD p+0(FP), R4
MOVW delta+8(FP), R5
SYNC
LWAR (R4), R3
ADD R5, R3
STWCCC R3, (R4)
BNE -4(PC)
SYNC
ISYNC
MOVW R3, R3
RETURN
TEXT runtime·xadd64(SB), NOSPLIT, $0-16
MOVD p+0(FP), R4
MOVD delta+8(FP), R5
SYNC
LDAR (R4), R3
ADD R5, R3
STDCCC R3, (R4)
BNE -4(PC)
SYNC
ISYNC
RETURN
TEXT runtime·xchg(SB), NOSPLIT, $0-12
MOVD p+0(FP), R4
MOVW new+8(FP), R5
SYNC
LWAR (R4), R3
STWCCC R5, (R4)
BNE -3(PC)
SYNC
ISYNC
RETURN
TEXT runtime·xchg64(SB), NOSPLIT, $0-16
MOVD p+0(FP), R4
MOVD new+8(FP), R5
SYNC
LDAR (R4), R3
STDCCC R5, (R4)
BNE -3(PC)
SYNC
ISYNC
RETURN
TEXT runtime·xchgp(SB), NOSPLIT, $0-16
BR runtime·xchg64(SB)
TEXT runtime·procyield(SB),NOSPLIT,$0-0
RETURN
TEXT runtime·atomicstorep(SB), NOSPLIT, $0-16
BR runtime·atomicstore64(SB)
TEXT runtime·atomicstore(SB), NOSPLIT, $0-12
MOVD 0(FP), R3
MOVW 8(FP), R4
SYNC
MOVW R4, 0(R3)
RETURN
TEXT runtime·atomicstore64(SB), NOSPLIT, $0-16
MOVD 0(FP), R3
MOVD 8(FP), R4
SYNC
MOVD R4, 0(R3)
RETURN
// void jmpdefer(fn, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 4 bytes to get back to BL deferreturn
// 3. BR to fn
TEXT runtime·jmpdefer(SB), NOSPLIT, $-8-16
MOVD 0(R1), R31
SUB $4, R31
MOVD R31, LR
MOVD fn+0(FP), R11
MOVD argp+8(FP), R1
SUB $8, R1
MOVD 0(R11), R3
MOVD R3, CTR
BR (CTR)
// Save state of caller into g->sched. Smashes R31.
TEXT gosave<>(SB),NOSPLIT,$-8
MOVD LR, R31
MOVD R31, (g_sched+gobuf_pc)(g)
MOVD R1, (g_sched+gobuf_sp)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD R0, (g_sched+gobuf_ret)(g)
MOVD R0, (g_sched+gobuf_ctxt)(g)
RETURN
// asmcgocall(void(*fn)(void*), void *arg)
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.c for more details.
TEXT runtime·asmcgocall(SB),NOSPLIT,$0-16
MOVD R0, 21(R0)
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$24-24
MOVD R0, 22(R0)
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize)
// See cgocall.c for more details.
TEXT runtime·cgocallback_gofunc(SB),NOSPLIT,$8-24
MOVD R0, 23(R0)
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-16
MOVD R0, 24(R0)
// void setg_gcc(G*); set g called from gcc.
TEXT setg_gcc<>(SB),NOSPLIT,$0
MOVD R0, 25(R0)
TEXT runtime·getcallerpc(SB),NOSPLIT,$-8-8
MOVD 0(R1), R3
RETURN
TEXT runtime·gogetcallerpc(SB),NOSPLIT,$-8-16
MOVD 0(R1), R3
MOVD R3,ret+8(FP)
RETURN
TEXT runtime·setcallerpc(SB),NOSPLIT,$-8-16
MOVD x+8(FP),R3 // addr of first arg
MOVD R3, 0(R1) // set calling pc
RETURN
TEXT runtime·getcallersp(SB),NOSPLIT,$0-8
MOVD sp+0(FP), R3
SUB $8, R3
RETURN
TEXT runtime·abort(SB),NOSPLIT,$-4-0
MOVW (R0), R0
UNDEF
#define TBRL 268
#define TBRU 269 /* Time base Upper/Lower */
// int64 runtime·cputicks(void)
TEXT runtime·cputicks(SB),NOSPLIT,$0-0
MOVW SPR(TBRU), R4
MOVW SPR(TBRL), R3
MOVW SPR(TBRU), R5
CMPW R4, R5
BNE -4(PC)
SLD $32, R5
OR R5, R3
RETURN
TEXT runtime·stackguard(SB),NOSPLIT,$0-16
MOVD R1, R3
MOVD R3, sp+0(FP)
MOVD g_stackguard(g), R3
MOVD R3, limit+8(FP)
RETURN
GLOBL runtime·tls0(SB), $64
// AES hashing not implemented for Power
TEXT runtime·aeshash(SB),NOSPLIT,$-8-0
MOVW (R0), R1
TEXT runtime·aeshash32(SB),NOSPLIT,$-8-0
MOVW (R0), R1
TEXT runtime·aeshash64(SB),NOSPLIT,$-8-0
MOVW (R0), R1
TEXT runtime·aeshashstr(SB),NOSPLIT,$-8-0
MOVW (R0), R1
TEXT runtime·memeq(SB),NOSPLIT,$-8-24
MOVD a+0(FP), R3
MOVD b+8(FP), R4
MOVD count+16(FP), R5
SUB $1, R3
SUB $1, R4
ADD R3, R5, R8
_next:
CMP R3, R8
BNE 3(PC)
MOVD $1, R3
RETURN
MOVBZU 1(R3), R6
MOVBZU 1(R4), R7
CMP R6, R7
BEQ _next
MOVD $0, R3
RETURN
TEXT runtime·gomemeq(SB),NOSPLIT,$0-25
MOVD a+0(FP), R3
MOVD b+8(FP), R4
MOVD count+16(FP), R5
SUB $1, R3
SUB $1, R4
ADD R3, R5, R8
_next2:
CMP R3, R8
BNE 4(PC)
MOVD $1, R3
MOVB R3, ret+24(FP)
RETURN
MOVBZU 1(R3), R6
MOVBZU 1(R4), R7
CMP R6, R7
BEQ _next2
MOVB R0, ret+24(FP)
RETURN
// eqstring tests whether two strings are equal.
// See runtime_test.go:eqstring_generic for
// equivlaent Go code.
TEXT runtime·eqstring(SB),NOSPLIT,$0-33
MOVD s1len+8(FP), R4
MOVD s2len+24(FP), R5
CMP R4, R5
BNE str_noteq
MOVD s1str+0(FP), R3
MOVD s2str+16(FP), R4
SUB $1, R3
SUB $1, R4
ADD R3, R5, R8
eq_next:
CMP R3, R8
BNE 4(PC)
MOVD $1, R3
MOVB R3, ret+32(FP)
RETURN
MOVBZU 1(R3), R6
MOVBZU 1(R4), R7
CMP R6, R7
BEQ eq_next
str_noteq:
MOVB R0, ret+32(FP)
RETURN
// TODO: share code with memeq?
TEXT bytes·Equal(SB),NOSPLIT,$0-49
MOVD a_len+8(FP), R3
MOVD b_len+32(FP), R4
CMP R3, R4 // unequal lengths are not equal
BNE _notequal
MOVD a+0(FP), R5
MOVD b+24(FP), R6
SUB $1, R5
SUB $1, R6
ADD R5, R3 // end-1
_byteseq_next:
CMP R5, R3
BEQ _equal // reached the end
MOVBZU 1(R5), R4
MOVBZU 1(R6), R7
CMP R4, R7
BEQ _byteseq_next
_notequal:
MOVBZ R0, ret+48(FP)
RETURN
_equal:
MOVD $1, R3
MOVBZ R3, ret+48(FP)
RETURN
TEXT bytes·IndexByte(SB),NOSPLIT,$0-40
MOVD s+0(FP), R3
MOVD s_len+8(FP), R4
MOVBZ c+24(FP), R5 // byte to find
MOVD R3, R6 // store base for later
SUB $1, R3
ADD R3, R4 // end-1
_index_loop:
CMP R3, R4
BEQ _index_notfound
MOVBZU 1(R3), R7
CMP R7, R5
BNE _index_loop
SUB R6, R3 // remove base
MOVD R3, ret+32(FP)
RETURN
_index_notfound:
MOVD $-1, R3
MOVD R3, ret+32(FP)
RETURN
TEXT strings·IndexByte(SB),NOSPLIT,$0
MOVD p+0(FP), R3
MOVD b_len+8(FP), R4
MOVBZ c+16(FP), R5 // byte to find
MOVD R3, R6 // store base for later
SUB $1, R3
ADD R3, R4 // end-1
_index2_loop:
CMP R3, R4
BEQ _index2_notfound
MOVBZU 1(R3), R7
CMP R7, R5
BNE _index2_loop
SUB R6, R3 // remove base
MOVD R3, ret+24(FP)
RETURN
_index2_notfound:
MOVD $-1, R3
MOVD R3, ret+24(FP)
RETURN
TEXT runtime·timenow(SB), NOSPLIT, $0-0
BR time·now(SB)
// A Duff's device for zeroing memory.
// The compiler jumps to computed addresses within
// this routine to zero chunks of memory. Do not
// change this code without also changing the code
// in ../../cmd/9g/ggen.c:/^clearfat.
// R0: always zero
// R3 (aka REGRT1): ptr to memory to be zeroed - 8
// R3 is updated as a side effect.
TEXT runtime·duffzero(SB), NOSPLIT, $-8-0
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
MOVDU R0, 8(R3)
RETURN
TEXT runtime·fastrand2(SB), NOSPLIT, $0-4
MOVD g_m(g), R4
MOVD m_fastrand(R4), R3
ADD R3, R3
CMP R3, $0
BGE 2(PC)
XOR $0x88888eef, R3
MOVD R3, m_fastrand(R4)
MOVD R3, ret+0(FP)
RETURN
// The gohash and goeq trampolines are necessary while we have
// both Go and C calls to alg functions. Once we move all call
// sites to Go, we can redo the hash/eq functions to use the
// Go calling convention and remove these.
// convert call to:
// func (alg unsafe.Pointer, p unsafe.Pointer, size uintpr, seed uintptr) uintptr
// to:
// func (hash *uintptr, size uintptr, p unsafe.Pointer)
TEXT runtime·gohash(SB), NOSPLIT, $24-40
FUNCDATA $FUNCDATA_ArgsPointerMaps,gcargs_gohash<>(SB)
FUNCDATA $FUNCDATA_LocalsPointerMaps,gclocals_gohash<>(SB)
MOVD a+0(FP), R3
MOVD alg_hash(R3), R3
MOVD R3, CTR
MOVD p+8(FP), R4
MOVD size+16(FP), R5
MOVD seed+24(FP), R6
MOVD R6, ret+32(FP)
MOVD $ret+32(FP), R7
MOVD R7, 8(R1)
MOVD R5, 16(R1)
MOVD R4, 24(R1)
PCDATA $PCDATA_StackMapIndex, $0
BL (CTR)
RETURN
DATA gcargs_gohash<>+0x00(SB)/4, $1 // 1 stackmap
DATA gcargs_gohash<>+0x04(SB)/4, $10 // 5 args
DATA gcargs_gohash<>+0x08(SB)/4, $(const_BitsPointer+(const_BitsPointer<<2))
GLOBL gcargs_gohash<>(SB),RODATA,$12
DATA gclocals_gohash<>+0x00(SB)/4, $1 // 1 stackmap
DATA gclocals_gohash<>+0x04(SB)/4, $0 // 0 locals
GLOBL gclocals_gohash<>(SB),RODATA,$8
// convert call to:
// func (alg unsafe.Pointer, p, q unsafe.Pointer, size uintptr) bool
// to:
// func (eq *bool, size uintptr, p, q unsafe.Pointer)
TEXT runtime·goeq(SB), NOSPLIT, $32-33
FUNCDATA $FUNCDATA_ArgsPointerMaps,gcargs_goeq<>(SB)
FUNCDATA $FUNCDATA_LocalsPointerMaps,gclocals_goeq<>(SB)
MOVD alg+0(FP), R3
MOVD alg_equal(R3), R3
MOVD R3, CTR
MOVD p+8(FP), R4
MOVD q+16(FP), R5
MOVD size+24(FP), R6
MOVD $ret+32(FP), R7
MOVD R7, 8(R1)
MOVD R6, 16(R1)
MOVD R5, 24(R1)
MOVD R4, 32(R1)
PCDATA $PCDATA_StackMapIndex, $0
BL (CTR)
RETURN
DATA gcargs_goeq<>+0x00(SB)/4, $1 // 1 stackmap
DATA gcargs_goeq<>+0x04(SB)/4, $10 // 5 args
DATA gcargs_goeq<>+0x08(SB)/4, $(const_BitsPointer+(const_BitsPointer<<2)+(const_BitsPointer<<4))
GLOBL gcargs_goeq<>(SB),RODATA,$12
DATA gclocals_goeq<>+0x00(SB)/4, $1 // 1 stackmap
DATA gclocals_goeq<>+0x04(SB)/4, $0 // 0 locals
GLOBL gclocals_goeq<>(SB),RODATA,$8