1
0
mirror of https://github.com/golang/go synced 2024-10-01 10:28:31 -06:00
go/ssa/ssa.go

1602 lines
50 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// This package defines a high-level intermediate representation for
// Go programs using static single-assignment (SSA) form.
import (
"fmt"
"go/ast"
"go/token"
"sync"
"code.google.com/p/go.tools/go/exact"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/go/types/typemap"
"code.google.com/p/go.tools/importer"
)
// A Program is a partial or complete Go program converted to SSA form.
//
type Program struct {
go.tools/importer: generalize command-line syntax. Motivation: pointer analysis tools (like the oracle) want the user to specify a set of initial packages, like 'go test'. This change enables the user to specify a set of packages on the command line using importer.LoadInitialPackages(args). Each argument is interpreted as either: - a comma-separated list of *.go source files together comprising one non-importable ad-hoc package. e.g. "src/pkg/net/http/triv.go" gives us [main]. - an import path, denoting both the imported package and its non-importable external test package, if any. e.g. "fmt" gives us [fmt, fmt_test]. Current type-checker limitations mean that only the first import path may contribute tests: multiple packages augmented by *_test.go files could create import cycles, which 'go test' avoids by building a separate executable for each one. That approach is less attractive for static analysis. Details: (many files touched, but importer.go is the crux) importer: - PackageInfo.Importable boolean indicates whether package is importable. - un-expose Importer.Packages; expose AllPackages() instead. - CreatePackageFromArgs has become LoadInitialPackages. - imports() moved to util.go, renamed importsOf(). - InitialPackagesUsage usage message exported to clients. - the package name for ad-hoc packages now comes from the 'package' decl, not "main". ssa.Program: - added CreatePackages() method - PackagesByPath un-exposed, renamed 'imported'. - expose AllPackages and ImportedPackage accessors. oracle: - describe: explain and workaround a go/types bug. Misc: - Removed various unnecessary error.Error() calls in Printf args. R=crawshaw CC=golang-dev https://golang.org/cl/13579043
2013-09-06 16:13:57 -06:00
Fset *token.FileSet // position information for the files of this Program
imported map[string]*Package // all importable Packages, keyed by import path
packages map[*types.Package]*Package // all loaded Packages, keyed by object
builtins map[types.Object]*Builtin // all built-in functions, keyed by typechecker objects.
mode BuilderMode // set of mode bits for SSA construction
methodsMu sync.Mutex // guards the following maps:
methodSets typemap.M // maps type to its concrete methodSet
go.tools/ssa: (another) major refactoring of method-set logic. We now use LookupFieldOrMethod for all SelectorExprs, and simplify the logic to discriminate the various cases. We inline static calls to promoted/indirected functions, dramatically reducing the number of functions created. More tests are needed, but I'd like to submit this as-is. In this CL, we: - rely less on Id strings. Internally we now use *types.Method (and its components) almost everywhere. - stop thinking of types.Methods as objects. They don't have stable identities. (Hopefully they will become plain-old structs soon.) - eliminate receiver indirection wrappers: indirection and promotion are handled together by makeWrapper. - Handle the interactions of promotion, indirection and abstract methods much more cleanly. - support receiver-bound interface method closures. - break up builder.selectField so we can re-use parts (emitFieldSelection). - add importer.PackageInfo.classifySelector utility. - delete interfaceMethodIndex() - delete namedTypeMethodIndex() - delete isSuperInterface() (replaced by types.IsAssignable) - call memberFromObject on each declared concrete method's *types.Func, not on every Method frem each method set, in the CREATE phase for packages loaded by gcimporter. go/types: - document Func, Signature.Recv() better. - use fmt in {Package,Label}.String - reimplement Func.String to be prettier and to include method receivers. API changes: - Function.method now holds the types.Method (soon to be not-an-object) for synthetic wrappers. - CallCommon.Method now contains an abstract (interface) method object; was an abstract method index. - CallCommon.MethodId() gone. - Program.LookupMethod now takes a *Method not an Id string. R=gri CC=golang-dev https://golang.org/cl/11674043
2013-07-26 09:22:34 -06:00
boundMethodWrappers map[*types.Func]*Function // wrappers for curried x.Method closures
ifaceMethodWrappers map[*types.Func]*Function // wrappers for curried I.Method functions
}
// A Package is a single analyzed Go package containing Members for
// all package-level functions, variables, constants and types it
// declares. These may be accessed directly via Members, or via the
// type-specific accessor methods Func, Type, Var and Const.
//
type Package struct {
Prog *Program // the owning program
Object *types.Package // the type checker's package object for this package
Members map[string]Member // all package members keyed by name
values map[types.Object]Value // package-level vars & funcs (incl. methods), keyed by object
init *Function // Func("init"); the package's (concatenated) init function
debug bool // include full debug info in this package.
// The following fields are set transiently, then cleared
// after building.
started int32 // atomically tested and set at start of build phase
info *importer.PackageInfo // package ASTs and type information
}
// A Member is a member of a Go package, implemented by *NamedConst,
// *Global, *Function, or *Type; they are created by package-level
// const, var, func and type declarations respectively.
//
type Member interface {
Name() string // declared name of the package member
String() string // package-qualified name of the package member
Object() types.Object // typechecker's object for this member, if any
Pos() token.Pos // position of member's declaration, if known
Type() types.Type // type of the package member
Token() token.Token // token.{VAR,FUNC,CONST,TYPE}
}
// A Type is a Member of a Package representing a package-level named type.
//
// Type() returns a *types.Named.
//
type Type struct {
object *types.TypeName
}
// A NamedConst is a Member of Package representing a package-level
// named constant value.
//
// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
// identifier.
//
// NB: a NamedConst is not a Value; it contains a constant Value, which
// it augments with the name and position of its 'const' declaration.
//
type NamedConst struct {
object *types.Const
Value *Const
pos token.Pos
}
// An SSA value that can be referenced by an instruction.
type Value interface {
// Name returns the name of this value, and determines how
// this Value appears when used as an operand of an
// Instruction.
//
// This is the same as the source name for Parameters,
// Builtins, Functions, Captures, Globals and some Allocs.
// For constants, it is a representation of the constant's value
// and type. For all other Values this is the name of the
// virtual register defined by the instruction.
//
// The name of an SSA Value is not semantically significant,
// and may not even be unique within a function.
Name() string
// If this value is an Instruction, String returns its
// disassembled form; otherwise it returns unspecified
// human-readable information about the Value, such as its
// kind, name and type.
String() string
// Type returns the type of this value. Many instructions
// (e.g. IndexAddr) change the behaviour depending on the
// types of their operands.
Type() types.Type
// Referrers returns the list of instructions that have this
// value as one of their operands; it may contain duplicates
// if an instruction has a repeated operand.
//
// Referrers actually returns a pointer through which the
// caller may perform mutations to the object's state.
//
// Referrers is currently only defined for the function-local
// values Capture, Parameter and all value-defining instructions.
// It returns nil for Function, Builtin, Const and Global.
//
// Instruction.Operands contains the inverse of this relation.
Referrers() *[]Instruction
// Pos returns the location of the AST token most closely
// associated with the operation that gave rise to this value,
// or token.NoPos if it was not explicit in the source.
//
// For each ast.Node type, a particular token is designated as
// the closest location for the expression, e.g. the Lparen
// for an *ast.CallExpr. This permits a compact but
// approximate mapping from Values to source positions for use
// in diagnostic messages, for example.
//
// (Do not use this position to determine which Value
// corresponds to an ast.Expr; use Function.ValueForExpr
// instead. NB: it requires that the function was built with
// debug information.)
//
Pos() token.Pos
}
// An Instruction is an SSA instruction that computes a new Value or
// has some effect.
//
// An Instruction that defines a value (e.g. BinOp) also implements
// the Value interface; an Instruction that only has an effect (e.g. Store)
// does not.
//
type Instruction interface {
// String returns the disassembled form of this value. e.g.
//
// Examples of Instructions that define a Value:
// e.g. "x + y" (BinOp)
// "len([])" (Call)
// Note that the name of the Value is not printed.
//
// Examples of Instructions that do define (are) Values:
// e.g. "ret x" (Ret)
// "*y = x" (Store)
//
// (This separation is useful for some analyses which
// distinguish the operation from the value it
// defines. e.g. 'y = local int' is both an allocation of
// memory 'local int' and a definition of a pointer y.)
String() string
// Parent returns the function to which this instruction
// belongs.
Parent() *Function
// Block returns the basic block to which this instruction
// belongs.
Block() *BasicBlock
// SetBlock sets the basic block to which this instruction
// belongs.
SetBlock(*BasicBlock)
// Operands returns the operands of this instruction: the
// set of Values it references.
//
// Specifically, it appends their addresses to rands, a
// user-provided slice, and returns the resulting slice,
// permitting avoidance of memory allocation.
//
// The operands are appended in undefined order; the addresses
// are always non-nil but may point to a nil Value. Clients
// may store through the pointers, e.g. to effect a value
// renaming.
//
// Value.Referrers is a subset of the inverse of this
// relation. (Referrers are not tracked for all types of
// Values.)
Operands(rands []*Value) []*Value
// Pos returns the location of the AST token most closely
// associated with the operation that gave rise to this
// instruction, or token.NoPos if it was not explicit in the
// source.
//
// For each ast.Node type, a particular token is designated as
// the closest location for the expression, e.g. the Go token
// for an *ast.GoStmt. This permits a compact but approximate
// mapping from Instructions to source positions for use in
// diagnostic messages, for example.
//
// (Do not use this position to determine which Instruction
// corresponds to an ast.Expr; see the notes for Value.Pos.
// This position may be used to determine which non-Value
// Instruction corresponds to some ast.Stmts, but not all: If
// and Jump instructions have no Pos(), for example.)
//
Pos() token.Pos
}
// Function represents the parameters, results and code of a function
// or method.
//
// If Blocks is nil, this indicates an external function for which no
// Go source code is available. In this case, Captures and Locals
// will be nil too. Clients performing whole-program analysis must
// handle external functions specially.
//
// Functions are immutable values; they do not have addresses.
//
// Blocks[0] is the function entry point; block order is not otherwise
// semantically significant, though it may affect the readability of
// the disassembly.
//
// A nested function that refers to one or more lexically enclosing
// local variables ("free variables") has Capture parameters. Such
// functions cannot be called directly but require a value created by
// MakeClosure which, via its Bindings, supplies values for these
// parameters.
//
// If the function is a method (Signature.Recv() != nil) then the first
// element of Params is the receiver parameter.
//
// Pos() returns the declaring ast.FuncLit.Type.Func or the position
// of the ast.FuncDecl.Name, if the function was explicit in the
// source. Synthetic wrappers, for which Synthetic != "", may share
// the same position as the function they wrap.
//
// Type() returns the function's Signature.
//
type Function struct {
name string
object types.Object // a declared *types.Func; nil for init, wrappers, etc.
method *types.Selection // info about provenance of synthetic methods [currently unused]
Signature *types.Signature
pos token.Pos
Synthetic string // provenance of synthetic function; "" for true source functions
Enclosing *Function // enclosing function if anon; nil if global
Pkg *Package // enclosing package; nil for error.Error() and its wrappers
Prog *Program // enclosing program
Params []*Parameter // function parameters; for methods, includes receiver
FreeVars []*Capture // free variables whose values must be supplied by closure
Locals []*Alloc
Blocks []*BasicBlock // basic blocks of the function; nil => external
AnonFuncs []*Function // anonymous functions directly beneath this one
// The following fields are set transiently during building,
// then cleared.
currentBlock *BasicBlock // where to emit code
objects map[types.Object]Value // addresses of local variables
namedResults []*Alloc // tuple of named results
syntax *funcSyntax // abstract syntax trees for Go source functions
targets *targets // linked stack of branch targets
lblocks map[*ast.Object]*lblock // labelled blocks
}
// An SSA basic block.
//
// The final element of Instrs is always an explicit transfer of
// control (If, Jump, Ret or Panic).
//
// A block may contain no Instructions only if it is unreachable,
// i.e. Preds is nil. Empty blocks are typically pruned.
//
// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
// graph independent of the SSA Value graph. It is illegal for
// multiple edges to exist between the same pair of blocks.
//
// The order of Preds and Succs are significant (to Phi and If
// instructions, respectively).
//
type BasicBlock struct {
Index int // index of this block within Func.Blocks
Comment string // optional label; no semantic significance
parent *Function // parent function
Instrs []Instruction // instructions in order
Preds, Succs []*BasicBlock // predecessors and successors
succs2 [2]*BasicBlock // initial space for Succs.
dom *domNode // node in dominator tree; optional.
gaps int // number of nil Instrs (transient).
rundefers int // number of rundefers (transient)
}
// Pure values ----------------------------------------
// A Capture represents a free variable of the function to which it
// belongs.
//
// Captures are used to implement anonymous functions, whose free
// variables are lexically captured in a closure formed by
// MakeClosure. The referent of such a capture is an Alloc or another
// Capture and is considered a potentially escaping heap address, with
// pointer type.
//
// Captures are also used to implement bound method closures. Such a
// capture represents the receiver value and may be of any type that
// has concrete methods.
//
// Pos() returns the position of the value that was captured, which
// belongs to an enclosing function.
//
type Capture struct {
name string
typ types.Type
pos token.Pos
parent *Function
referrers []Instruction
// Transiently needed during building.
outer Value // the Value captured from the enclosing context.
}
// A Parameter represents an input parameter of a function.
//
type Parameter struct {
name string
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
object types.Object // a *types.Var; nil for non-source locals
typ types.Type
pos token.Pos
parent *Function
referrers []Instruction
}
// A Const represents the value of a constant expression.
//
// It may have a nil, boolean, string or numeric (integer, fraction or
// complex) value, or a []byte or []rune conversion of a string
// constant.
//
// Consts may be of named types. A constant's underlying type can be
// a basic type, possibly one of the "untyped" types, or a slice type
// whose elements' underlying type is byte or rune. A nil constant can
// have any reference type: interface, map, channel, pointer, slice,
// or function---but not "untyped nil".
//
// All source-level constant expressions are represented by a Const
// of equal type and value.
//
// Value holds the exact value of the constant, independent of its
// Type(), using the same representation as package go/exact uses for
// constants.
//
// Pos() returns token.NoPos.
//
// Example printed form:
// 42:int
// "hello":untyped string
// 3+4i:MyComplex
//
type Const struct {
typ types.Type
Value exact.Value
}
// A Global is a named Value holding the address of a package-level
// variable.
//
// Pos() returns the position of the ast.ValueSpec.Names[*]
// identifier.
//
type Global struct {
name string
object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
typ types.Type
pos token.Pos
Pkg *Package
// The following fields are set transiently during building,
// then cleared.
spec *ast.ValueSpec // explained at buildGlobal
}
// A Builtin represents a built-in function, e.g. len.
//
// Builtins are immutable values. Builtins do not have addresses.
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
// Builtins can only appear in CallCommon.Func.
//
// Type() returns a *types.Builtin.
// Built-in functions may have polymorphic or variadic types that are
// not expressible in Go's type system.
//
type Builtin struct {
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
object *types.Func // canonical types.Universe object for this built-in
}
// Value-defining instructions ----------------------------------------
// The Alloc instruction reserves space for a value of the given type,
// zero-initializes it, and yields its address.
//
// Alloc values are always addresses, and have pointer types, so the
// type of the allocated space is actually indirect(Type()).
//
// If Heap is false, Alloc allocates space in the function's
// activation record (frame); we refer to an Alloc(Heap=false) as a
// "local" alloc. Each local Alloc returns the same address each time
// it is executed within the same activation; the space is
// re-initialized to zero.
//
// If Heap is true, Alloc allocates space in the heap, and returns; we
// refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc
// returns a different address each time it is executed.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
// or the ast.CallExpr.Lparen for a call to new() or for a call that
// allocates a varargs slice.
//
// Example printed form:
// t0 = local int
// t1 = new int
//
type Alloc struct {
Register
Comment string
Heap bool
index int // dense numbering; for lifting
}
// The Phi instruction represents an SSA φ-node, which combines values
// that differ across incoming control-flow edges and yields a new
// value. Within a block, all φ-nodes must appear before all non-φ
// nodes.
//
// Pos() returns the position of the && or || for short-circuit
// control-flow joins, or that of the *Alloc for φ-nodes inserted
// during SSA renaming.
//
// Example printed form:
// t2 = phi [0.start: t0, 1.if.then: t1, ...]
//
type Phi struct {
Register
Comment string // a hint as to its purpose
Edges []Value // Edges[i] is value for Block().Preds[i]
}
// The Call instruction represents a function or method call.
//
// The Call instruction yields the function result, if there is
// exactly one, or a tuple (empty or len>1) whose components are
// accessed via Extract.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
//
// Example printed form:
// t2 = println(t0, t1)
// t4 = t3()
// t7 = invoke t5.Println(...t6)
//
type Call struct {
Register
Call CallCommon
}
// The BinOp instruction yields the result of binary operation X Op Y.
//
// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
//
// Example printed form:
// t1 = t0 + 1:int
//
type BinOp struct {
Register
// One of:
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &~
// EQL LSS GTR NEQ LEQ GEQ == != < <= < >=
Op token.Token
X, Y Value
}
// The UnOp instruction yields the result of Op X.
// ARROW is channel receive.
// MUL is pointer indirection (load).
// XOR is bitwise complement.
// SUB is negation.
//
// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
// and a boolean indicating the success of the receive. The
// components of the tuple are accessed using Extract.
//
// Pos() returns the ast.UnaryExpr.OpPos or ast.RangeStmt.TokPos (for
// ranging over a channel), if explicit in the source.
//
// Example printed form:
// t0 = *x
// t2 = <-t1,ok
//
type UnOp struct {
Register
Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
X Value
CommaOk bool
}
// The ChangeType instruction applies to X a value-preserving type
// change to Type().
//
// Type changes are permitted:
// - between a named type and its underlying type.
// - between two named types of the same underlying type.
// - between (possibly named) pointers to identical base types.
// - between f(T) functions and (T) func f() methods.
// - from a bidirectional channel to a read- or write-channel,
// optionally adding/removing a name.
//
// This operation cannot fail dynamically.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = changetype *int <- IntPtr (t0)
//
type ChangeType struct {
Register
X Value
}
// The Convert instruction yields the conversion of value X to type
// Type(). One or both of those types is basic (but possibly named).
//
// A conversion may change the value and representation of its operand.
// Conversions are permitted:
// - between real numeric types.
// - between complex numeric types.
// - between string and []byte or []rune.
// - between pointers and unsafe.Pointer.
// - between unsafe.Pointer and uintptr.
// - from (Unicode) integer to (UTF-8) string.
// A conversion may imply a type name change also.
//
// This operation cannot fail dynamically.
//
// Conversions of untyped string/number/bool constants to a specific
// representation are eliminated during SSA construction.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = convert []byte <- string (t0)
//
type Convert struct {
Register
X Value
}
// ChangeInterface constructs a value of one interface type from a
// value of another interface type known to be assignable to it.
// This operation cannot fail.
//
// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
// instruction arose from an explicit e.(T) operation; or token.NoPos
// otherwise.
//
// Example printed form:
// t1 = change interface interface{} <- I (t0)
//
type ChangeInterface struct {
Register
X Value
}
// MakeInterface constructs an instance of an interface type from a
// value of a concrete type.
//
// Use X.Type().MethodSet() to find the method-set of X, and
// Program.Method(m) to find the implementation of a method.
//
// To construct the zero value of an interface type T, use:
// NewConst(exact.MakeNil(), T, pos)
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = make interface{} <- int (42:int)
// t2 = make Stringer <- t0
//
type MakeInterface struct {
Register
X Value
}
// The MakeClosure instruction yields a closure value whose code is
// Fn and whose free variables' values are supplied by Bindings.
//
// Type() returns a (possibly named) *types.Signature.
//
// Pos() returns the ast.FuncLit.Type.Func for a function literal
// closure or the ast.SelectorExpr.Sel for a bound method closure.
//
// Example printed form:
// t0 = make closure anon@1.2 [x y z]
// t1 = make closure bound$(main.I).add [i]
//
type MakeClosure struct {
Register
Fn Value // always a *Function
Bindings []Value // values for each free variable in Fn.FreeVars
}
// The MakeMap instruction creates a new hash-table-based map object
// and yields a value of kind map.
//
// Type() returns a (possibly named) *types.Map.
//
// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
// the ast.CompositeLit.Lbrack if created by a literal.
//
// Example printed form:
// t1 = make map[string]int t0
// t1 = make StringIntMap t0
//
type MakeMap struct {
Register
Reserve Value // initial space reservation; nil => default
}
// The MakeChan instruction creates a new channel object and yields a
// value of kind chan.
//
// Type() returns a (possibly named) *types.Chan.
//
// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
// created it.
//
// Example printed form:
// t0 = make chan int 0
// t0 = make IntChan 0
//
type MakeChan struct {
Register
Size Value // int; size of buffer; zero => synchronous.
}
// The MakeSlice instruction yields a slice of length Len backed by a
// newly allocated array of length Cap.
//
// Both Len and Cap must be non-nil Values of integer type.
//
// (Alloc(types.Array) followed by Slice will not suffice because
// Alloc can only create arrays of statically known length.)
//
// Type() returns a (possibly named) *types.Slice.
//
// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
// created it.
//
// Example printed form:
// t1 = make []string 1:int t0
// t1 = make StringSlice 1:int t0
//
type MakeSlice struct {
Register
Len Value
Cap Value
}
// The Slice instruction yields a slice of an existing string, slice
// or *array X between optional integer bounds Low and High.
//
// Dynamically, this instruction panics if X evaluates to a nil *array
// pointer.
//
// Type() returns string if the type of X was string, otherwise a
// *types.Slice with the same element type as X.
//
// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
// operation, the ast.CompositeLit.Lbrace if created by a literal, or
// NoPos if not explicit in the source (e.g. a variadic argument slice).
//
// Example printed form:
// t1 = slice t0[1:]
//
type Slice struct {
Register
X Value // slice, string, or *array
Low, High Value // either may be nil
}
// The FieldAddr instruction yields the address of Field of *struct X.
//
// The field is identified by its index within the field list of the
// struct type of X.
//
// Dynamically, this instruction panics if X evaluates to a nil
// pointer.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source.
//
// Example printed form:
// t1 = &t0.name [#1]
//
type FieldAddr struct {
Register
X Value // *struct
Field int // index into X.Type().Deref().(*types.Struct).Fields
}
// The Field instruction yields the Field of struct X.
//
// The field is identified by its index within the field list of the
// struct type of X; by using numeric indices we avoid ambiguity of
// package-local identifiers and permit compact representations.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source.
//
// Example printed form:
// t1 = t0.name [#1]
//
type Field struct {
Register
X Value // struct
Field int // index into X.Type().(*types.Struct).Fields
}
// The IndexAddr instruction yields the address of the element at
// index Index of collection X. Index is an integer expression.
//
// The elements of maps and strings are not addressable; use Lookup or
// MapUpdate instead.
//
// Dynamically, this instruction panics if X evaluates to a nil *array
// pointer.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
// explicit in the source.
//
// Example printed form:
// t2 = &t0[t1]
//
type IndexAddr struct {
Register
X Value // slice or *array,
Index Value // numeric index
}
// The Index instruction yields element Index of array X.
//
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
// explicit in the source.
//
// Example printed form:
// t2 = t0[t1]
//
type Index struct {
Register
X Value // array
Index Value // integer index
}
// The Lookup instruction yields element Index of collection X, a map
// or string. Index is an integer expression if X is a string or the
// appropriate key type if X is a map.
//
// If CommaOk, the result is a 2-tuple of the value above and a
// boolean indicating the result of a map membership test for the key.
// The components of the tuple are accessed using Extract.
//
// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
//
// Example printed form:
// t2 = t0[t1]
// t5 = t3[t4],ok
//
type Lookup struct {
Register
X Value // string or map
Index Value // numeric or key-typed index
CommaOk bool // return a value,ok pair
}
// SelectState is a helper for Select.
// It represents one goal state and its corresponding communication.
//
type SelectState struct {
Dir ast.ChanDir // direction of case
Chan Value // channel to use (for send or receive)
Send Value // value to send (for send)
Pos token.Pos // position of token.ARROW
DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
}
// The Select instruction tests whether (or blocks until) one or more
// of the specified sent or received states is entered.
//
// Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
// be the element type of each such state's Chan.
// Select returns an n+2-tuple
// (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
// The tuple's components, described below, must be accessed via the
// Extract instruction.
//
// If Blocking, select waits until exactly one state holds, i.e. a
// channel becomes ready for the designated operation of sending or
// receiving; select chooses one among the ready states
// pseudorandomly, performs the send or receive operation, and sets
// 'index' to the index of the chosen channel.
//
// If !Blocking, select doesn't block if no states hold; instead it
// returns immediately with index equal to -1.
//
// If the chosen channel was used for a receive, the r_i component is
// set to the received value, where i is the index of that state among
// all n receive states; otherwise r_i has the zero value of type T_i.
// Note that the the receive index i is not the same as the state
// index index.
//
// The second component of the triple, recvOk, is a boolean whose value
// is true iff the selected operation was a receive and the receive
// successfully yielded a value.
//
// Pos() returns the ast.SelectStmt.Select.
//
// Example printed form:
// t3 = select nonblocking [<-t0, t1<-t2, ...]
// t4 = select blocking []
//
type Select struct {
Register
States []*SelectState
Blocking bool
}
// The Range instruction yields an iterator over the domain and range
// of X, which must be a string or map.
//
// Elements are accessed via Next.
//
// Type() returns an opaque and degenerate "rangeIter" type.
//
// Pos() returns the ast.RangeStmt.For.
//
// Example printed form:
// t0 = range "hello":string
//
type Range struct {
Register
X Value // string or map
}
// The Next instruction reads and advances the (map or string)
// iterator Iter and returns a 3-tuple value (ok, k, v). If the
// iterator is not exhausted, ok is true and k and v are the next
// elements of the domain and range, respectively. Otherwise ok is
// false and k and v are undefined.
//
// Components of the tuple are accessed using Extract.
//
// The IsString field distinguishes iterators over strings from those
// over maps, as the Type() alone is insufficient: consider
// map[int]rune.
//
// Type() returns a *types.Tuple for the triple (ok, k, v).
// The types of k and/or v may be types.Invalid.
//
// Example printed form:
// t1 = next t0
//
type Next struct {
Register
Iter Value
IsString bool // true => string iterator; false => map iterator.
}
// The TypeAssert instruction tests whether interface value X has type
// AssertedType.
//
// If !CommaOk, on success it returns v, the result of the conversion
// (defined below); on failure it panics.
//
// If CommaOk: on success it returns a pair (v, true) where v is the
// result of the conversion; on failure it returns (z, false) where z
// is AssertedType's zero value. The components of the pair must be
// accessed using the Extract instruction.
//
// If AssertedType is a concrete type, TypeAssert checks whether the
// dynamic type in interface X is equal to it, and if so, the result
// of the conversion is a copy of the value in the interface.
//
// If AssertedType is an interface, TypeAssert checks whether the
// dynamic type of the interface is assignable to it, and if so, the
// result of the conversion is a copy of the interface value X.
// If AssertedType is a superinterface of X.Type(), the operation will
// fail iff the operand is nil. (Contrast with ChangeInterface, which
// performs no nil-check.)
//
// Type() reflects the actual type of the result, possibly a
// 2-types.Tuple; AssertedType is the asserted type.
//
// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
// instruction arose from an explicit e.(T) operation; or the
// ast.CaseClause.Case if the instruction arose from a case of a
// type-switch statement.
//
// Example printed form:
// t1 = typeassert t0.(int)
// t3 = typeassert,ok t2.(T)
//
type TypeAssert struct {
Register
X Value
AssertedType types.Type
CommaOk bool
}
// The Extract instruction yields component Index of Tuple.
//
// This is used to access the results of instructions with multiple
// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
// IndexExpr(Map).
//
// Example printed form:
// t1 = extract t0 #1
//
type Extract struct {
Register
Tuple Value
Index int
}
// Instructions executed for effect. They do not yield a value. --------------------
// The Jump instruction transfers control to the sole successor of its
// owning block.
//
// A Jump must be the last instruction of its containing BasicBlock.
//
// Pos() returns NoPos.
//
// Example printed form:
// jump done
//
type Jump struct {
anInstruction
}
// The If instruction transfers control to one of the two successors
// of its owning block, depending on the boolean Cond: the first if
// true, the second if false.
//
// An If instruction must be the last instruction of its containing
// BasicBlock.
//
// Pos() returns NoPos.
//
// Example printed form:
// if t0 goto done else body
//
type If struct {
anInstruction
Cond Value
}
// The Ret instruction returns values and control back to the calling
// function.
//
// len(Results) is always equal to the number of results in the
// function's signature.
//
// If len(Results) > 1, Ret returns a tuple value with the specified
// components which the caller must access using Extract instructions.
//
// There is no instruction to return a ready-made tuple like those
// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
// a tail-call to a function with multiple result parameters.
//
// Ret must be the last instruction of its containing BasicBlock.
// Such a block has no successors.
//
// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
//
// Example printed form:
// ret
// ret nil:I, 2:int
//
type Ret struct {
anInstruction
Results []Value
pos token.Pos
}
// The RunDefers instruction pops and invokes the entire stack of
// procedure calls pushed by Defer instructions in this function.
//
// It is legal to encounter multiple 'rundefers' instructions in a
// single control-flow path through a function; this is useful in
// the combined init() function, for example.
//
// Pos() returns NoPos.
//
// Example printed form:
// rundefers
//
type RunDefers struct {
anInstruction
}
// The Panic instruction initiates a panic with value X.
//
// A Panic instruction must be the last instruction of its containing
// BasicBlock, which must have no successors.
//
// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
// they are treated as calls to a built-in function.
//
// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
// in the source.
//
// Example printed form:
// panic t0
//
type Panic struct {
anInstruction
X Value // an interface{}
pos token.Pos
}
// The Go instruction creates a new goroutine and calls the specified
// function within it.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.GoStmt.Go.
//
// Example printed form:
// go println(t0, t1)
// go t3()
// go invoke t5.Println(...t6)
//
type Go struct {
anInstruction
Call CallCommon
pos token.Pos
}
// The Defer instruction pushes the specified call onto a stack of
// functions to be called by a RunDefers instruction or by a panic.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.DeferStmt.Defer.
//
// Example printed form:
// defer println(t0, t1)
// defer t3()
// defer invoke t5.Println(...t6)
//
type Defer struct {
anInstruction
Call CallCommon
pos token.Pos
}
// The Send instruction sends X on channel Chan.
//
// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
//
// Example printed form:
// send t0 <- t1
//
type Send struct {
anInstruction
Chan, X Value
pos token.Pos
}
// The Store instruction stores Val at address Addr.
// Stores can be of arbitrary types.
//
// Pos() returns the ast.StarExpr.Star, if explicit in the source.
//
// Example printed form:
// *x = y
//
type Store struct {
anInstruction
Addr Value
Val Value
pos token.Pos
}
// The MapUpdate instruction updates the association of Map[Key] to
// Value.
//
// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
// if explicit in the source.
//
// Example printed form:
// t0[t1] = t2
//
type MapUpdate struct {
anInstruction
Map Value
Key Value
Value Value
pos token.Pos
}
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
// A DebugRef instruction provides the position information for a
// specific source-level expression that compiles to the SSA value X.
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
//
// DebugRef is a pseudo-instruction: it has no dynamic effect.
//
// Pos() returns Expr.Pos(), the position of the source-level
// expression.
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
//
// Object() returns the source-level (var/const/func) object denoted
// by Expr if it is an *ast.Ident; otherwise it is nil.
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
//
// (By representing these as instructions, rather than out-of-band,
// consistency is maintained during transformation passes by the
// ordinary SSA renaming machinery.)
//
type DebugRef struct {
anInstruction
X Value // the value whose position we're declaring
Expr ast.Expr // the referring expression
object types.Object // the identity of the source var/const/func
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
}
// Embeddable mix-ins and helpers for common parts of other structs. -----------
// Register is a mix-in embedded by all SSA values that are also
// instructions, i.e. virtual registers, and provides implementations
// of the Value interface's Name() and Type() methods: the name is
// simply a numbered register (e.g. "t0") and the type is the typ
// field.
//
// Temporary names are automatically assigned to each Register on
// completion of building a function in SSA form.
//
// Clients must not assume that the 'id' value (and the Name() derived
// from it) is unique within a function. As always in this API,
// semantics are determined only by identity; names exist only to
// facilitate debugging.
//
type Register struct {
anInstruction
num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
typ types.Type // type of virtual register
pos token.Pos // position of source expression, or NoPos
referrers []Instruction
}
// anInstruction is a mix-in embedded by all Instructions.
// It provides the implementations of the Block and SetBlock methods.
type anInstruction struct {
block *BasicBlock // the basic block of this instruction
}
// CallCommon is contained by Go, Defer and Call to hold the
// common parts of a function or method call.
//
// Each CallCommon exists in one of two modes, function call and
// interface method invocation, or "call" and "invoke" for short.
//
go.tools/ssa: (another) major refactoring of method-set logic. We now use LookupFieldOrMethod for all SelectorExprs, and simplify the logic to discriminate the various cases. We inline static calls to promoted/indirected functions, dramatically reducing the number of functions created. More tests are needed, but I'd like to submit this as-is. In this CL, we: - rely less on Id strings. Internally we now use *types.Method (and its components) almost everywhere. - stop thinking of types.Methods as objects. They don't have stable identities. (Hopefully they will become plain-old structs soon.) - eliminate receiver indirection wrappers: indirection and promotion are handled together by makeWrapper. - Handle the interactions of promotion, indirection and abstract methods much more cleanly. - support receiver-bound interface method closures. - break up builder.selectField so we can re-use parts (emitFieldSelection). - add importer.PackageInfo.classifySelector utility. - delete interfaceMethodIndex() - delete namedTypeMethodIndex() - delete isSuperInterface() (replaced by types.IsAssignable) - call memberFromObject on each declared concrete method's *types.Func, not on every Method frem each method set, in the CREATE phase for packages loaded by gcimporter. go/types: - document Func, Signature.Recv() better. - use fmt in {Package,Label}.String - reimplement Func.String to be prettier and to include method receivers. API changes: - Function.method now holds the types.Method (soon to be not-an-object) for synthetic wrappers. - CallCommon.Method now contains an abstract (interface) method object; was an abstract method index. - CallCommon.MethodId() gone. - Program.LookupMethod now takes a *Method not an Id string. R=gri CC=golang-dev https://golang.org/cl/11674043
2013-07-26 09:22:34 -06:00
// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
// represents an ordinary function call of the value in Value,
// which may be a *Builtin, a *Function or any other value of kind
// 'func'.
//
// In the common case in which Value is a *Function, this indicates a
// statically dispatched call to a package-level function, an
// anonymous function, or a method of a named type. Also statically
// dispatched, but less common, Value may be a *MakeClosure, indicating
// an immediately applied function literal with free variables. Any
// other value of Value indicates a dynamically dispatched function
// call. The StaticCallee method returns the callee in these cases.
//
// Args contains the arguments to the call. If Value is a method,
// Args[0] contains the receiver parameter.
//
// Example printed form:
// t2 = println(t0, t1)
// go t3()
// defer t5(...t6)
//
go.tools/ssa: (another) major refactoring of method-set logic. We now use LookupFieldOrMethod for all SelectorExprs, and simplify the logic to discriminate the various cases. We inline static calls to promoted/indirected functions, dramatically reducing the number of functions created. More tests are needed, but I'd like to submit this as-is. In this CL, we: - rely less on Id strings. Internally we now use *types.Method (and its components) almost everywhere. - stop thinking of types.Methods as objects. They don't have stable identities. (Hopefully they will become plain-old structs soon.) - eliminate receiver indirection wrappers: indirection and promotion are handled together by makeWrapper. - Handle the interactions of promotion, indirection and abstract methods much more cleanly. - support receiver-bound interface method closures. - break up builder.selectField so we can re-use parts (emitFieldSelection). - add importer.PackageInfo.classifySelector utility. - delete interfaceMethodIndex() - delete namedTypeMethodIndex() - delete isSuperInterface() (replaced by types.IsAssignable) - call memberFromObject on each declared concrete method's *types.Func, not on every Method frem each method set, in the CREATE phase for packages loaded by gcimporter. go/types: - document Func, Signature.Recv() better. - use fmt in {Package,Label}.String - reimplement Func.String to be prettier and to include method receivers. API changes: - Function.method now holds the types.Method (soon to be not-an-object) for synthetic wrappers. - CallCommon.Method now contains an abstract (interface) method object; was an abstract method index. - CallCommon.MethodId() gone. - Program.LookupMethod now takes a *Method not an Id string. R=gri CC=golang-dev https://golang.org/cl/11674043
2013-07-26 09:22:34 -06:00
// 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
// represents a dynamically dispatched call to an interface method.
// In this mode, Value is the interface value and Method is the
// interface's abstract method. Note: an abstract method may be
// shared by multiple interfaces due to embedding; Value.Type()
// provides the specific interface used for this call.
//
// Value is implicitly supplied to the concrete method implementation
// as the receiver parameter; in other words, Args[0] holds not the
// receiver but the first true argument.
//
// Example printed form:
// t1 = invoke t0.String()
// go invoke t3.Run(t2)
// defer invoke t4.Handle(...t5)
//
// In both modes, HasEllipsis is true iff the last element of Args is
// a slice value containing zero or more arguments to a variadic
// function. (This is not semantically significant since the type of
// the called function is sufficient to determine this, but it aids
// readability of the printed form.)
//
type CallCommon struct {
Value Value // receiver (invoke mode) or func value (call mode)
Method *types.Func // abstract method (invoke mode)
Args []Value // actual parameters (in static method call, includes receiver)
go.tools/ssa: (another) major refactoring of method-set logic. We now use LookupFieldOrMethod for all SelectorExprs, and simplify the logic to discriminate the various cases. We inline static calls to promoted/indirected functions, dramatically reducing the number of functions created. More tests are needed, but I'd like to submit this as-is. In this CL, we: - rely less on Id strings. Internally we now use *types.Method (and its components) almost everywhere. - stop thinking of types.Methods as objects. They don't have stable identities. (Hopefully they will become plain-old structs soon.) - eliminate receiver indirection wrappers: indirection and promotion are handled together by makeWrapper. - Handle the interactions of promotion, indirection and abstract methods much more cleanly. - support receiver-bound interface method closures. - break up builder.selectField so we can re-use parts (emitFieldSelection). - add importer.PackageInfo.classifySelector utility. - delete interfaceMethodIndex() - delete namedTypeMethodIndex() - delete isSuperInterface() (replaced by types.IsAssignable) - call memberFromObject on each declared concrete method's *types.Func, not on every Method frem each method set, in the CREATE phase for packages loaded by gcimporter. go/types: - document Func, Signature.Recv() better. - use fmt in {Package,Label}.String - reimplement Func.String to be prettier and to include method receivers. API changes: - Function.method now holds the types.Method (soon to be not-an-object) for synthetic wrappers. - CallCommon.Method now contains an abstract (interface) method object; was an abstract method index. - CallCommon.MethodId() gone. - Program.LookupMethod now takes a *Method not an Id string. R=gri CC=golang-dev https://golang.org/cl/11674043
2013-07-26 09:22:34 -06:00
HasEllipsis bool // true iff last Args is a slice of '...' args (needed?)
pos token.Pos // position of CallExpr.Lparen, iff explicit in source
}
// IsInvoke returns true if this call has "invoke" (not "call") mode.
func (c *CallCommon) IsInvoke() bool {
go.tools/ssa: (another) major refactoring of method-set logic. We now use LookupFieldOrMethod for all SelectorExprs, and simplify the logic to discriminate the various cases. We inline static calls to promoted/indirected functions, dramatically reducing the number of functions created. More tests are needed, but I'd like to submit this as-is. In this CL, we: - rely less on Id strings. Internally we now use *types.Method (and its components) almost everywhere. - stop thinking of types.Methods as objects. They don't have stable identities. (Hopefully they will become plain-old structs soon.) - eliminate receiver indirection wrappers: indirection and promotion are handled together by makeWrapper. - Handle the interactions of promotion, indirection and abstract methods much more cleanly. - support receiver-bound interface method closures. - break up builder.selectField so we can re-use parts (emitFieldSelection). - add importer.PackageInfo.classifySelector utility. - delete interfaceMethodIndex() - delete namedTypeMethodIndex() - delete isSuperInterface() (replaced by types.IsAssignable) - call memberFromObject on each declared concrete method's *types.Func, not on every Method frem each method set, in the CREATE phase for packages loaded by gcimporter. go/types: - document Func, Signature.Recv() better. - use fmt in {Package,Label}.String - reimplement Func.String to be prettier and to include method receivers. API changes: - Function.method now holds the types.Method (soon to be not-an-object) for synthetic wrappers. - CallCommon.Method now contains an abstract (interface) method object; was an abstract method index. - CallCommon.MethodId() gone. - Program.LookupMethod now takes a *Method not an Id string. R=gri CC=golang-dev https://golang.org/cl/11674043
2013-07-26 09:22:34 -06:00
return c.Method != nil
}
func (c *CallCommon) Pos() token.Pos { return c.pos }
// Signature returns the signature of the called function.
//
// For an "invoke"-mode call, the signature of the interface method is
// returned.
//
// In either "call" or "invoke" mode, if the callee is a method, its
// receiver is represented by sig.Recv, not sig.Params().At(0).
//
// Signature returns nil for a call to a built-in function.
//
func (c *CallCommon) Signature() *types.Signature {
go.tools/ssa: (another) major refactoring of method-set logic. We now use LookupFieldOrMethod for all SelectorExprs, and simplify the logic to discriminate the various cases. We inline static calls to promoted/indirected functions, dramatically reducing the number of functions created. More tests are needed, but I'd like to submit this as-is. In this CL, we: - rely less on Id strings. Internally we now use *types.Method (and its components) almost everywhere. - stop thinking of types.Methods as objects. They don't have stable identities. (Hopefully they will become plain-old structs soon.) - eliminate receiver indirection wrappers: indirection and promotion are handled together by makeWrapper. - Handle the interactions of promotion, indirection and abstract methods much more cleanly. - support receiver-bound interface method closures. - break up builder.selectField so we can re-use parts (emitFieldSelection). - add importer.PackageInfo.classifySelector utility. - delete interfaceMethodIndex() - delete namedTypeMethodIndex() - delete isSuperInterface() (replaced by types.IsAssignable) - call memberFromObject on each declared concrete method's *types.Func, not on every Method frem each method set, in the CREATE phase for packages loaded by gcimporter. go/types: - document Func, Signature.Recv() better. - use fmt in {Package,Label}.String - reimplement Func.String to be prettier and to include method receivers. API changes: - Function.method now holds the types.Method (soon to be not-an-object) for synthetic wrappers. - CallCommon.Method now contains an abstract (interface) method object; was an abstract method index. - CallCommon.MethodId() gone. - Program.LookupMethod now takes a *Method not an Id string. R=gri CC=golang-dev https://golang.org/cl/11674043
2013-07-26 09:22:34 -06:00
if c.Method != nil {
return c.Method.Type().(*types.Signature)
}
sig, _ := c.Value.Type().Underlying().(*types.Signature) // nil for *Builtin
return sig
}
// StaticCallee returns the called function if this is a trivially
// static "call"-mode call.
func (c *CallCommon) StaticCallee() *Function {
switch fn := c.Value.(type) {
case *Function:
return fn
case *MakeClosure:
return fn.Fn.(*Function)
}
return nil
}
// Description returns a description of the mode of this call suitable
// for a user interface, e.g. "static method call".
func (c *CallCommon) Description() string {
switch fn := c.Value.(type) {
case *Builtin:
return "built-in function call"
case *MakeClosure:
return "static function closure call"
case *Function:
if fn.Signature.Recv() != nil {
return "static method call"
}
return "static function call"
}
if c.IsInvoke() {
return "dynamic method call" // ("invoke" mode)
}
return "dynamic function call"
}
// The CallInstruction interface, implemented by *Go, *Defer and *Call,
// exposes the common parts of function calling instructions,
// yet provides a way back to the Value defined by *Call alone.
//
type CallInstruction interface {
Instruction
Common() *CallCommon // returns the common parts of the call
Value() *Call // returns the result value of the call (*Call) or nil (*Go, *Defer)
}
func (s *Call) Common() *CallCommon { return &s.Call }
func (s *Defer) Common() *CallCommon { return &s.Call }
func (s *Go) Common() *CallCommon { return &s.Call }
func (s *Call) Value() *Call { return s }
func (s *Defer) Value() *Call { return nil }
func (s *Go) Value() *Call { return nil }
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
func (v *Builtin) Type() types.Type { return v.object.Type() }
func (v *Builtin) Name() string { return v.object.Name() }
func (*Builtin) Referrers() *[]Instruction { return nil }
func (v *Builtin) Pos() token.Pos { return token.NoPos }
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
func (v *Builtin) Object() types.Object { return v.object }
func (v *Capture) Type() types.Type { return v.typ }
func (v *Capture) Name() string { return v.name }
func (v *Capture) Referrers() *[]Instruction { return &v.referrers }
func (v *Capture) Pos() token.Pos { return v.pos }
func (v *Capture) Parent() *Function { return v.parent }
func (v *Global) Type() types.Type { return v.typ }
func (v *Global) Name() string { return v.name }
func (v *Global) Pos() token.Pos { return v.pos }
func (*Global) Referrers() *[]Instruction { return nil }
func (v *Global) Token() token.Token { return token.VAR }
func (v *Global) Object() types.Object { return v.object }
func (v *Function) Name() string { return v.name }
func (v *Function) Type() types.Type { return v.Signature }
func (v *Function) Pos() token.Pos { return v.pos }
func (*Function) Referrers() *[]Instruction { return nil }
func (v *Function) Token() token.Token { return token.FUNC }
func (v *Function) Object() types.Object { return v.object }
func (v *Parameter) Type() types.Type { return v.typ }
func (v *Parameter) Name() string { return v.name }
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
func (v *Parameter) Object() types.Object { return v.object }
func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
func (v *Parameter) Pos() token.Pos { return v.pos }
func (v *Parameter) Parent() *Function { return v.parent }
func (v *Alloc) Type() types.Type { return v.typ }
func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
func (v *Alloc) Pos() token.Pos { return v.pos }
func (v *Register) Type() types.Type { return v.typ }
func (v *Register) setType(typ types.Type) { v.typ = typ }
func (v *Register) Name() string { return fmt.Sprintf("t%d", v.num) }
func (v *Register) setNum(num int) { v.num = num }
func (v *Register) Referrers() *[]Instruction { return &v.referrers }
func (v *Register) asRegister() *Register { return v }
func (v *Register) Pos() token.Pos { return v.pos }
func (v *Register) setPos(pos token.Pos) { v.pos = pos }
func (v *anInstruction) Parent() *Function { return v.block.parent }
func (v *anInstruction) Block() *BasicBlock { return v.block }
func (v *anInstruction) SetBlock(block *BasicBlock) { v.block = block }
func (t *Type) Name() string { return t.object.Name() }
func (t *Type) Pos() token.Pos { return t.object.Pos() }
func (t *Type) Type() types.Type { return t.object.Type() }
func (t *Type) Token() token.Token { return token.TYPE }
func (t *Type) Object() types.Object { return t.object }
func (t *Type) String() string {
return fmt.Sprintf("%s.%s", t.object.Pkg().Path(), t.object.Name())
}
func (c *NamedConst) Name() string { return c.object.Name() }
func (c *NamedConst) Pos() token.Pos { return c.object.Pos() }
func (c *NamedConst) String() string {
return fmt.Sprintf("%s.%s", c.object.Pkg().Path(), c.object.Name())
}
func (c *NamedConst) Type() types.Type { return c.object.Type() }
func (c *NamedConst) Token() token.Token { return token.CONST }
func (c *NamedConst) Object() types.Object { return c.object }
// Func returns the package-level function of the specified name,
// or nil if not found.
//
func (p *Package) Func(name string) (f *Function) {
f, _ = p.Members[name].(*Function)
return
}
// Var returns the package-level variable of the specified name,
// or nil if not found.
//
func (p *Package) Var(name string) (g *Global) {
g, _ = p.Members[name].(*Global)
return
}
// Const returns the package-level constant of the specified name,
// or nil if not found.
//
func (p *Package) Const(name string) (c *NamedConst) {
c, _ = p.Members[name].(*NamedConst)
return
}
// Type returns the package-level type of the specified name,
// or nil if not found.
//
func (p *Package) Type(name string) (t *Type) {
t, _ = p.Members[name].(*Type)
return
}
func (v *Call) Pos() token.Pos { return v.Call.pos }
func (s *Defer) Pos() token.Pos { return s.pos }
func (s *Go) Pos() token.Pos { return s.pos }
func (s *MapUpdate) Pos() token.Pos { return s.pos }
func (s *Panic) Pos() token.Pos { return s.pos }
func (s *Ret) Pos() token.Pos { return s.pos }
func (s *Send) Pos() token.Pos { return s.pos }
func (s *Store) Pos() token.Pos { return s.pos }
func (s *If) Pos() token.Pos { return token.NoPos }
func (s *Jump) Pos() token.Pos { return token.NoPos }
func (s *RunDefers) Pos() token.Pos { return token.NoPos }
func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() }
// Operands.
func (v *Alloc) Operands(rands []*Value) []*Value {
return rands
}
func (v *BinOp) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Y)
}
func (c *CallCommon) Operands(rands []*Value) []*Value {
rands = append(rands, &c.Value)
for i := range c.Args {
rands = append(rands, &c.Args[i])
}
return rands
}
func (s *Go) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (s *Call) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (s *Defer) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (v *ChangeInterface) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *ChangeType) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Convert) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
func (s *DebugRef) Operands(rands []*Value) []*Value {
return append(rands, &s.X)
}
func (v *Extract) Operands(rands []*Value) []*Value {
return append(rands, &v.Tuple)
}
func (v *Field) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *FieldAddr) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *If) Operands(rands []*Value) []*Value {
return append(rands, &s.Cond)
}
func (v *Index) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *IndexAddr) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (*Jump) Operands(rands []*Value) []*Value {
return rands
}
func (v *Lookup) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *MakeChan) Operands(rands []*Value) []*Value {
return append(rands, &v.Size)
}
func (v *MakeClosure) Operands(rands []*Value) []*Value {
rands = append(rands, &v.Fn)
for i := range v.Bindings {
rands = append(rands, &v.Bindings[i])
}
return rands
}
func (v *MakeInterface) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *MakeMap) Operands(rands []*Value) []*Value {
return append(rands, &v.Reserve)
}
func (v *MakeSlice) Operands(rands []*Value) []*Value {
return append(rands, &v.Len, &v.Cap)
}
func (v *MapUpdate) Operands(rands []*Value) []*Value {
return append(rands, &v.Map, &v.Key, &v.Value)
}
func (v *Next) Operands(rands []*Value) []*Value {
return append(rands, &v.Iter)
}
func (s *Panic) Operands(rands []*Value) []*Value {
return append(rands, &s.X)
}
func (v *Phi) Operands(rands []*Value) []*Value {
for i := range v.Edges {
rands = append(rands, &v.Edges[i])
}
return rands
}
func (v *Range) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *Ret) Operands(rands []*Value) []*Value {
for i := range s.Results {
rands = append(rands, &s.Results[i])
}
return rands
}
func (*RunDefers) Operands(rands []*Value) []*Value {
return rands
}
func (v *Select) Operands(rands []*Value) []*Value {
for i := range v.States {
rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
}
return rands
}
func (s *Send) Operands(rands []*Value) []*Value {
return append(rands, &s.Chan, &s.X)
}
func (v *Slice) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Low, &v.High)
}
func (s *Store) Operands(rands []*Value) []*Value {
return append(rands, &s.Addr, &s.Val)
}
func (v *TypeAssert) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *UnOp) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}