1
0
mirror of https://github.com/golang/go synced 2024-10-01 10:38:33 -06:00
go/ssa/print.go

476 lines
11 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// This file implements the String() methods for all Value and
// Instruction types.
import (
"bytes"
"fmt"
"go/ast"
"io"
"reflect"
"sort"
"strings"
"code.google.com/p/go.tools/go/types"
)
// relName returns the name of v relative to i.
// In most cases, this is identical to v.Name(), but for references to
// Functions (including methods) and Globals, the FullName is used
// instead, explicitly package-qualified for cross-package references.
//
func relName(v Value, i Instruction) string {
switch v := v.(type) {
case *Global:
if i != nil && v.Pkg == i.Parent().Pkg {
return v.Name()
}
return v.FullName()
case *Function:
var pkg *Package
if i != nil {
pkg = i.Parent().Pkg
}
return v.fullName(pkg)
}
return v.Name()
}
// relType is like t.String(), but if t is a Named type belonging to
// package from, optionally wrapped by one or more Pointer
// constructors, package qualification is suppressed.
//
// TODO(gri): provide this functionality in go/types (using a
// *types.Package, obviously).
//
// TODO(adonovan): use this more widely, e.g.
// ChangeType, Literal, Convert, MakeInterface;
// when displaying receiver, params, locals, captures of a Function;
// and in the RHS type column for Value-defining Instructions.
//
// TODO(adonovan): fix: unsafe.Pointer has no ssa.Package.
//
func relType(t types.Type, from *Package) string {
if from != nil {
t2 := t
var nptr int // number of Pointers stripped off
for {
ptr, ok := t2.(*types.Pointer)
if !ok {
break
}
t2 = ptr.Elem()
nptr++
}
if n, ok := t2.(*types.Named); ok && n.Obj().Pkg() == from.Object {
return strings.Repeat("*", nptr) + n.Obj().Name()
}
}
return t.String()
}
// Value.String()
//
// This method is provided only for debugging.
// It never appears in disassembly, which uses Value.Name().
func (v *Const) String() string {
return v.Name()
}
func (v *Parameter) String() string {
return fmt.Sprintf("parameter %s : %s", v.Name(), v.Type())
}
func (v *Capture) String() string {
return fmt.Sprintf("capture %s : %s", v.Name(), v.Type())
}
func (v *Global) String() string {
return v.FullName()
}
func (v *Builtin) String() string {
return fmt.Sprintf("builtin %s", v.Name())
}
func (v *Function) String() string {
return v.fullName(nil)
}
// FullName returns g's package-qualified name.
func (g *Global) FullName() string {
return fmt.Sprintf("%s.%s", g.Pkg.Object.Path(), g.name)
}
// Instruction.String()
func (v *Alloc) String() string {
op := "local"
if v.Heap {
op = "new"
}
return fmt.Sprintf("%s %s (%s)", op, relType(deref(v.Type()), v.Parent().Pkg), v.Comment)
}
func (v *Phi) String() string {
var b bytes.Buffer
b.WriteString("phi [")
for i, edge := range v.Edges {
if i > 0 {
b.WriteString(", ")
}
// Be robust against malformed CFG.
blockname := "?"
if v.block != nil && i < len(v.block.Preds) {
blockname = v.block.Preds[i].String()
}
b.WriteString(blockname)
b.WriteString(": ")
edgeVal := "<nil>" // be robust
if edge != nil {
edgeVal = relName(edge, v)
}
b.WriteString(edgeVal)
}
b.WriteString("]")
if v.Comment != "" {
b.WriteString(" #")
b.WriteString(v.Comment)
}
return b.String()
}
func printCall(v *CallCommon, prefix string, instr Instruction) string {
var b bytes.Buffer
b.WriteString(prefix)
if !v.IsInvoke() {
b.WriteString(relName(v.Value, instr))
} else {
fmt.Fprintf(&b, "invoke %s.%s", relName(v.Value, instr), v.Method.Name())
}
b.WriteString("(")
for i, arg := range v.Args {
if i > 0 {
b.WriteString(", ")
}
b.WriteString(relName(arg, instr))
}
if v.HasEllipsis {
b.WriteString("...")
}
b.WriteString(")")
return b.String()
}
func (c *CallCommon) String() string {
return printCall(c, "", nil)
}
func (v *Call) String() string {
return printCall(&v.Call, "", v)
}
func (v *ChangeType) String() string {
return fmt.Sprintf("changetype %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
}
func (v *BinOp) String() string {
return fmt.Sprintf("%s %s %s", relName(v.X, v), v.Op.String(), relName(v.Y, v))
}
func (v *UnOp) String() string {
return fmt.Sprintf("%s%s%s", v.Op, relName(v.X, v), commaOk(v.CommaOk))
}
func (v *Convert) String() string {
return fmt.Sprintf("convert %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
}
func (v *ChangeInterface) String() string {
return fmt.Sprintf("change interface %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
}
func (v *MakeInterface) String() string {
return fmt.Sprintf("make %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
}
func (v *MakeClosure) String() string {
var b bytes.Buffer
fmt.Fprintf(&b, "make closure %s", relName(v.Fn, v))
if v.Bindings != nil {
b.WriteString(" [")
for i, c := range v.Bindings {
if i > 0 {
b.WriteString(", ")
}
b.WriteString(relName(c, v))
}
b.WriteString("]")
}
return b.String()
}
func (v *MakeSlice) String() string {
var b bytes.Buffer
b.WriteString("make ")
b.WriteString(v.Type().String())
b.WriteString(" ")
b.WriteString(relName(v.Len, v))
b.WriteString(" ")
b.WriteString(relName(v.Cap, v))
return b.String()
}
func (v *Slice) String() string {
var b bytes.Buffer
b.WriteString("slice ")
b.WriteString(relName(v.X, v))
b.WriteString("[")
if v.Low != nil {
b.WriteString(relName(v.Low, v))
}
b.WriteString(":")
if v.High != nil {
b.WriteString(relName(v.High, v))
}
b.WriteString("]")
return b.String()
}
func (v *MakeMap) String() string {
res := ""
if v.Reserve != nil {
res = relName(v.Reserve, v)
}
return fmt.Sprintf("make %s %s", v.Type(), res)
}
func (v *MakeChan) String() string {
return fmt.Sprintf("make %s %s", v.Type(), relName(v.Size, v))
}
func (v *FieldAddr) String() string {
st := deref(v.X.Type()).Underlying().(*types.Struct)
// Be robust against a bad index.
name := "?"
if 0 <= v.Field && v.Field < st.NumFields() {
name = st.Field(v.Field).Name()
}
return fmt.Sprintf("&%s.%s [#%d]", relName(v.X, v), name, v.Field)
}
func (v *Field) String() string {
st := v.X.Type().Underlying().(*types.Struct)
// Be robust against a bad index.
name := "?"
if 0 <= v.Field && v.Field < st.NumFields() {
name = st.Field(v.Field).Name()
}
return fmt.Sprintf("%s.%s [#%d]", relName(v.X, v), name, v.Field)
}
func (v *IndexAddr) String() string {
return fmt.Sprintf("&%s[%s]", relName(v.X, v), relName(v.Index, v))
}
func (v *Index) String() string {
return fmt.Sprintf("%s[%s]", relName(v.X, v), relName(v.Index, v))
}
func (v *Lookup) String() string {
return fmt.Sprintf("%s[%s]%s", relName(v.X, v), relName(v.Index, v), commaOk(v.CommaOk))
}
func (v *Range) String() string {
return "range " + relName(v.X, v)
}
func (v *Next) String() string {
return "next " + relName(v.Iter, v)
}
func (v *TypeAssert) String() string {
return fmt.Sprintf("typeassert%s %s.(%s)", commaOk(v.CommaOk), relName(v.X, v), v.AssertedType)
}
func (v *Extract) String() string {
return fmt.Sprintf("extract %s #%d", relName(v.Tuple, v), v.Index)
}
func (s *Jump) String() string {
// Be robust against malformed CFG.
blockname := "?"
if s.block != nil && len(s.block.Succs) == 1 {
blockname = s.block.Succs[0].String()
}
return fmt.Sprintf("jump %s", blockname)
}
func (s *If) String() string {
// Be robust against malformed CFG.
tblockname, fblockname := "?", "?"
if s.block != nil && len(s.block.Succs) == 2 {
tblockname = s.block.Succs[0].String()
fblockname = s.block.Succs[1].String()
}
return fmt.Sprintf("if %s goto %s else %s", relName(s.Cond, s), tblockname, fblockname)
}
func (s *Go) String() string {
return printCall(&s.Call, "go ", s)
}
func (s *Panic) String() string {
return "panic " + relName(s.X, s)
}
func (s *Ret) String() string {
var b bytes.Buffer
b.WriteString("ret")
for i, r := range s.Results {
if i == 0 {
b.WriteString(" ")
} else {
b.WriteString(", ")
}
b.WriteString(relName(r, s))
}
return b.String()
}
func (*RunDefers) String() string {
return "rundefers"
}
func (s *Send) String() string {
return fmt.Sprintf("send %s <- %s", relName(s.Chan, s), relName(s.X, s))
}
func (s *Defer) String() string {
return printCall(&s.Call, "defer ", s)
}
func (s *Select) String() string {
var b bytes.Buffer
for i, st := range s.States {
if i > 0 {
b.WriteString(", ")
}
if st.Dir == ast.RECV {
b.WriteString("<-")
b.WriteString(relName(st.Chan, s))
} else {
b.WriteString(relName(st.Chan, s))
b.WriteString("<-")
b.WriteString(relName(st.Send, s))
}
}
non := ""
if !s.Blocking {
non = "non"
}
return fmt.Sprintf("select %sblocking [%s]", non, b.String())
}
func (s *Store) String() string {
return fmt.Sprintf("*%s = %s", relName(s.Addr, s), relName(s.Val, s))
}
func (s *MapUpdate) String() string {
return fmt.Sprintf("%s[%s] = %s", relName(s.Map, s), relName(s.Key, s), relName(s.Value, s))
}
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
func (s *DebugRef) String() string {
p := s.Parent().Prog.Fset.Position(s.Pos())
var descr interface{}
if s.object != nil {
descr = s.object // e.g. "var x int"
} else {
descr = reflect.TypeOf(s.Expr) // e.g. "*ast.CallExpr"
}
return fmt.Sprintf("; %s is %s @ %d:%d", s.X.Name(), descr, p.Line, p.Column)
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
}
func (p *Package) String() string {
return "package " + p.Object.Path()
}
func (p *Package) DumpTo(w io.Writer) {
fmt.Fprintf(w, "%s:\n", p)
var names []string
maxname := 0
for name := range p.Members {
if l := len(name); l > maxname {
maxname = l
}
names = append(names, name)
}
sort.Strings(names)
for _, name := range names {
switch mem := p.Members[name].(type) {
case *NamedConst:
fmt.Fprintf(w, " const %-*s %s = %s\n", maxname, name, mem.Name(), mem.Value.Name())
case *Function:
fmt.Fprintf(w, " func %-*s %s\n", maxname, name, mem.Type())
case *Type:
fmt.Fprintf(w, " type %-*s %s\n", maxname, name, mem.Type().Underlying())
for _, meth := range IntuitiveMethodSet(mem.Type()) {
fmt.Fprintf(w, " %s\n", meth)
}
case *Global:
fmt.Fprintf(w, " var %-*s %s\n", maxname, name, mem.Type())
}
}
fmt.Fprintf(w, "\n")
}
// IntuitiveMethodSet returns the intuitive method set of a type, T.
//
// The result contains MethodSet(T) and additionally, if T is a
// concrete type, methods belonging to *T if there is no similarly
// named method on T itself. This corresponds to user intuition about
// method sets; this function is intended only for user interfaces.
//
// The order of the result is as for types.MethodSet(T).
//
// TODO(gri): move this to go/types?
//
func IntuitiveMethodSet(T types.Type) []*types.Selection {
var result []*types.Selection
mset := T.MethodSet()
if _, ok := T.Underlying().(*types.Interface); ok {
for i, n := 0, mset.Len(); i < n; i++ {
result = append(result, mset.At(i))
}
} else {
pmset := types.NewPointer(T).MethodSet()
for i, n := 0, pmset.Len(); i < n; i++ {
meth := pmset.At(i)
if m := mset.Lookup(meth.Obj().Pkg(), meth.Obj().Name()); m != nil {
meth = m
}
result = append(result, meth)
}
}
return result
}
func commaOk(x bool) string {
if x {
return ",ok"
}
return ""
}