1
0
mirror of https://github.com/golang/go synced 2024-11-18 18:44:42 -07:00
go/internal/lsp/source/completion.go

627 lines
18 KiB
Go
Raw Normal View History

// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package source
import (
"context"
"fmt"
"go/ast"
"go/token"
"go/types"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/internal/lsp/snippet"
)
type CompletionItem struct {
// Label is the primary text the user sees for this completion item.
Label string
// Detail is supplemental information to present to the user.
// This often contains the type or return type of the completion item.
Detail string
// InsertText is the text to insert if this item is selected.
// Any of the prefix that has already been typed is not trimmed.
// The insert text does not contain snippets.
InsertText string
Kind CompletionItemKind
// Score is the internal relevance score.
// A higher score indicates that this completion item is more relevant.
Score float64
// Snippet is the LSP snippet for the completion item, without placeholders.
// The LSP specification contains details about LSP snippets.
// For example, a snippet for a function with the following signature:
//
// func foo(a, b, c int)
//
// would be:
//
// foo(${1:})
//
Snippet *snippet.Builder
// PlaceholderSnippet is the LSP snippet for the completion ite, containing
// placeholders. The LSP specification contains details about LSP snippets.
// For example, a placeholder snippet for a function with the following signature:
//
// func foo(a, b, c int)
//
// would be:
//
// foo(${1:a int}, ${2: b int}, ${3: c int})
//
PlaceholderSnippet *snippet.Builder
}
type CompletionItemKind int
const (
Unknown CompletionItemKind = iota
InterfaceCompletionItem
StructCompletionItem
TypeCompletionItem
ConstantCompletionItem
FieldCompletionItem
ParameterCompletionItem
VariableCompletionItem
FunctionCompletionItem
MethodCompletionItem
PackageCompletionItem
)
// Scoring constants are used for weighting the relevance of different candidates.
const (
// stdScore is the base score for all completion items.
stdScore float64 = 1.0
// highScore indicates a very relevant completion item.
highScore float64 = 10.0
// lowScore indicates an irrelevant or not useful completion item.
lowScore float64 = 0.01
)
// completer contains the necessary information for a single completion request.
type completer struct {
// Package-specific fields.
types *types.Package
info *types.Info
qf types.Qualifier
// view is the View associated with this completion request.
view View
// ctx is the context associated with this completion request.
ctx context.Context
// pos is the position at which the request was triggered.
pos token.Pos
// path is the path of AST nodes enclosing the position.
path []ast.Node
// seen is the map that ensures we do not return duplicate results.
seen map[types.Object]bool
// items is the list of completion items returned.
items []CompletionItem
// prefix is the already-typed portion of the completion candidates.
prefix string
// expectedType is the type we expect the completion candidate to be.
// It may not be set.
expectedType types.Type
// enclosingFunction is the function declaration enclosing the position.
enclosingFunction *types.Signature
// preferTypeNames is true if we are completing at a position that expects a type,
// not a value.
preferTypeNames bool
// enclosingCompositeLiteral is the composite literal enclosing the position.
enclosingCompositeLiteral *ast.CompositeLit
// enclosingKeyValue is the key value expression enclosing the position.
enclosingKeyValue *ast.KeyValueExpr
// inCompositeLiteralField is true if we are completing a composite literal field.
inCompositeLiteralField bool
}
// found adds a candidate completion.
//
// Only the first candidate of a given name is considered.
func (c *completer) found(obj types.Object, weight float64) {
if obj.Pkg() != nil && obj.Pkg() != c.types && !obj.Exported() {
return // inaccessible
}
if c.seen[obj] {
return
}
c.seen[obj] = true
if c.matchingType(obj.Type()) {
weight *= highScore
}
if _, ok := obj.(*types.TypeName); !ok && c.preferTypeNames {
weight *= lowScore
}
c.items = append(c.items, c.item(obj, weight))
}
// Completion returns a list of possible candidates for completion, given a
// a file and a position.
//
// The prefix is computed based on the preceding identifier and can be used by
// the client to score the quality of the completion. For instance, some clients
// may tolerate imperfect matches as valid completion results, since users may make typos.
func Completion(ctx context.Context, f File, pos token.Pos) ([]CompletionItem, string, error) {
file := f.GetAST(ctx)
pkg := f.GetPackage(ctx)
if pkg == nil || pkg.IsIllTyped() {
return nil, "", fmt.Errorf("package for %s is ill typed", f.URI())
}
// Completion is based on what precedes the cursor.
// Find the path to the position before pos.
path, _ := astutil.PathEnclosingInterval(file, pos-1, pos-1)
if path == nil {
return nil, "", fmt.Errorf("cannot find node enclosing position")
}
// Skip completion inside comments.
for _, g := range file.Comments {
if g.Pos() <= pos && pos <= g.End() {
return nil, "", nil
}
}
// Skip completion inside any kind of literal.
if _, ok := path[0].(*ast.BasicLit); ok {
return nil, "", nil
}
lit, kv, inCompositeLiteralField := enclosingCompositeLiteral(path, pos)
c := &completer{
types: pkg.GetTypes(),
info: pkg.GetTypesInfo(),
qf: qualifier(file, pkg.GetTypes(), pkg.GetTypesInfo()),
view: f.View(),
ctx: ctx,
path: path,
pos: pos,
seen: make(map[types.Object]bool),
expectedType: expectedType(path, pos, pkg.GetTypesInfo()),
enclosingFunction: enclosingFunction(path, pos, pkg.GetTypesInfo()),
preferTypeNames: preferTypeNames(path, pos),
enclosingCompositeLiteral: lit,
enclosingKeyValue: kv,
inCompositeLiteralField: inCompositeLiteralField,
}
// Composite literals are handled entirely separately.
if c.enclosingCompositeLiteral != nil {
c.expectedType = c.expectedCompositeLiteralType(c.enclosingCompositeLiteral, c.enclosingKeyValue)
if c.inCompositeLiteralField {
if err := c.compositeLiteral(c.enclosingCompositeLiteral, c.enclosingKeyValue); err != nil {
return nil, "", err
}
return c.items, c.prefix, nil
}
}
switch n := path[0].(type) {
case *ast.Ident:
// Set the filter prefix.
c.prefix = n.Name[:pos-n.Pos()]
// Is this the Sel part of a selector?
if sel, ok := path[1].(*ast.SelectorExpr); ok && sel.Sel == n {
if err := c.selector(sel); err != nil {
return nil, "", err
}
return c.items, c.prefix, nil
}
// reject defining identifiers
if obj, ok := pkg.GetTypesInfo().Defs[n]; ok {
if v, ok := obj.(*types.Var); ok && v.IsField() {
// An anonymous field is also a reference to a type.
} else {
of := ""
if obj != nil {
qual := types.RelativeTo(pkg.GetTypes())
of += ", of " + types.ObjectString(obj, qual)
}
return nil, "", fmt.Errorf("this is a definition%s", of)
}
}
if err := c.lexical(); err != nil {
return nil, "", err
}
// The function name hasn't been typed yet, but the parens are there:
// recv.‸(arg)
case *ast.TypeAssertExpr:
// Create a fake selector expression.
if err := c.selector(&ast.SelectorExpr{X: n.X}); err != nil {
return nil, "", err
}
case *ast.SelectorExpr:
if err := c.selector(n); err != nil {
return nil, "", err
}
default:
// fallback to lexical completions
if err := c.lexical(); err != nil {
return nil, "", err
}
}
return c.items, c.prefix, nil
}
// selector finds completions for the specified selector expression.
func (c *completer) selector(sel *ast.SelectorExpr) error {
// Is sel a qualified identifier?
if id, ok := sel.X.(*ast.Ident); ok {
if pkgname, ok := c.info.Uses[id].(*types.PkgName); ok {
// Enumerate package members.
scope := pkgname.Imported().Scope()
for _, name := range scope.Names() {
c.found(scope.Lookup(name), stdScore)
}
return nil
}
}
// Invariant: sel is a true selector.
tv, ok := c.info.Types[sel.X]
if !ok {
return fmt.Errorf("cannot resolve %s", sel.X)
}
// Add methods of T.
mset := types.NewMethodSet(tv.Type)
for i := 0; i < mset.Len(); i++ {
c.found(mset.At(i).Obj(), stdScore)
}
// Add methods of *T.
if tv.Addressable() && !types.IsInterface(tv.Type) && !isPointer(tv.Type) {
mset := types.NewMethodSet(types.NewPointer(tv.Type))
for i := 0; i < mset.Len(); i++ {
c.found(mset.At(i).Obj(), stdScore)
}
}
// Add fields of T.
for _, f := range fieldSelections(tv.Type) {
c.found(f, stdScore)
}
return nil
}
// lexical finds completions in the lexical environment.
func (c *completer) lexical() error {
var scopes []*types.Scope // scopes[i], where i<len(path), is the possibly nil Scope of path[i].
for _, n := range c.path {
switch node := n.(type) {
case *ast.FuncDecl:
n = node.Type
case *ast.FuncLit:
n = node.Type
}
scopes = append(scopes, c.info.Scopes[n])
}
scopes = append(scopes, c.types.Scope(), types.Universe)
// Track seen variables to avoid showing completions for shadowed variables.
// This works since we look at scopes from innermost to outermost.
seen := make(map[string]struct{})
// Process scopes innermost first.
for i, scope := range scopes {
if scope == nil {
continue
}
for _, name := range scope.Names() {
declScope, obj := scope.LookupParent(name, c.pos)
if declScope != scope {
continue // Name was declared in some enclosing scope, or not at all.
}
// If obj's type is invalid, find the AST node that defines the lexical block
// containing the declaration of obj. Don't resolve types for packages.
if _, ok := obj.(*types.PkgName); !ok && obj.Type() == types.Typ[types.Invalid] {
// Match the scope to its ast.Node. If the scope is the package scope,
// use the *ast.File as the starting node.
var node ast.Node
if i < len(c.path) {
node = c.path[i]
} else if i == len(c.path) { // use the *ast.File for package scope
node = c.path[i-1]
}
if node != nil {
if resolved := resolveInvalid(obj, node, c.info); resolved != nil {
obj = resolved
}
}
}
score := stdScore
// Rank builtins significantly lower than other results.
if scope == types.Universe {
score *= 0.1
}
// If we haven't already added a candidate for an object with this name.
if _, ok := seen[obj.Name()]; !ok {
seen[obj.Name()] = struct{}{}
c.found(obj, score)
}
}
}
return nil
}
// compositeLiteral finds completions for field names inside a composite literal.
func (c *completer) compositeLiteral(lit *ast.CompositeLit, kv *ast.KeyValueExpr) error {
switch n := c.path[0].(type) {
case *ast.Ident:
c.prefix = n.Name[:c.pos-n.Pos()]
}
// Mark fields of the composite literal that have already been set,
// except for the current field.
hasKeys := kv != nil // true if the composite literal already has key-value pairs
addedFields := make(map[*types.Var]bool)
for _, el := range lit.Elts {
if kvExpr, ok := el.(*ast.KeyValueExpr); ok {
if kv == kvExpr {
continue
}
hasKeys = true
if key, ok := kvExpr.Key.(*ast.Ident); ok {
if used, ok := c.info.Uses[key]; ok {
if usedVar, ok := used.(*types.Var); ok {
addedFields[usedVar] = true
}
}
}
}
}
// If the underlying type of the composite literal is a struct,
// collect completions for the fields of this struct.
if tv, ok := c.info.Types[lit]; ok {
switch t := tv.Type.Underlying().(type) {
case *types.Struct:
var structPkg *types.Package // package that struct is declared in
for i := 0; i < t.NumFields(); i++ {
field := t.Field(i)
if i == 0 {
structPkg = field.Pkg()
}
if !addedFields[field] {
c.found(field, highScore)
}
}
// Add lexical completions if the user hasn't typed a key value expression
// and if the struct fields are defined in the same package as the user is in.
if !hasKeys && structPkg == c.types {
return c.lexical()
}
default:
return c.lexical()
}
}
return nil
}
func enclosingCompositeLiteral(path []ast.Node, pos token.Pos) (lit *ast.CompositeLit, kv *ast.KeyValueExpr, ok bool) {
for _, n := range path {
switch n := n.(type) {
case *ast.CompositeLit:
// The enclosing node will be a composite literal if the user has just
// opened the curly brace (e.g. &x{<>) or the completion request is triggered
// from an already completed composite literal expression (e.g. &x{foo: 1, <>})
//
// The position is not part of the composite literal unless it falls within the
// curly braces (e.g. "foo.Foo<>Struct{}").
if n.Lbrace <= pos && pos <= n.Rbrace {
lit = n
// If the cursor position is within a key-value expression inside the composite
// literal, we try to determine if it is before or after the colon. If it is before
// the colon, we return field completions. If the cursor does not belong to any
// expression within the composite literal, we show composite literal completions.
if expr, isKeyValue := exprAtPos(pos, n.Elts).(*ast.KeyValueExpr); kv == nil && isKeyValue {
kv = expr
// If the position belongs to a key-value expression and is after the colon,
// don't show composite literal completions.
ok = pos <= kv.Colon
} else if kv == nil {
ok = true
}
}
return lit, kv, ok
case *ast.KeyValueExpr:
if kv == nil {
kv = n
// If the position belongs to a key-value expression and is after the colon,
// don't show composite literal completions.
ok = pos <= kv.Colon
}
case *ast.FuncType, *ast.CallExpr, *ast.TypeAssertExpr:
// These node types break the type link between the leaf node and
// the composite literal. The type of the leaf node becomes unrelated
// to the type of the composite literal, so we return nil to avoid
// inappropriate completions. For example, "Foo{Bar: x.Baz(<>)}"
// should complete as a function argument to Baz, not part of the Foo
// composite literal.
return nil, nil, false
}
}
return lit, kv, ok
}
// enclosingFunction returns the signature of the function enclosing the given position.
func enclosingFunction(path []ast.Node, pos token.Pos, info *types.Info) *types.Signature {
for _, node := range path {
switch t := node.(type) {
case *ast.FuncDecl:
if obj, ok := info.Defs[t.Name]; ok {
return obj.Type().(*types.Signature)
}
case *ast.FuncLit:
if typ, ok := info.Types[t]; ok {
return typ.Type.(*types.Signature)
}
}
}
return nil
}
func (c *completer) expectedCompositeLiteralType(lit *ast.CompositeLit, kv *ast.KeyValueExpr) types.Type {
litType, ok := c.info.Types[lit]
if !ok {
return nil
}
switch t := litType.Type.Underlying().(type) {
case *types.Slice:
return t.Elem()
case *types.Array:
return t.Elem()
case *types.Map:
if kv == nil || c.pos <= kv.Colon {
return t.Key()
}
return t.Elem()
case *types.Struct:
// If we are in a key-value expression.
if kv != nil {
// There is no expected type for a struct field name.
if c.pos <= kv.Colon {
return nil
}
// Find the type of the struct field whose name matches the key.
if key, ok := kv.Key.(*ast.Ident); ok {
for i := 0; i < t.NumFields(); i++ {
if field := t.Field(i); field.Name() == key.Name {
return field.Type()
}
}
}
return nil
}
// We are in a struct literal, but not a specific key-value pair.
// If the struct literal doesn't have explicit field names,
// we may still be able to suggest an expected type.
for _, el := range lit.Elts {
if _, ok := el.(*ast.KeyValueExpr); ok {
return nil
}
}
// The order of the literal fields must match the order in the struct definition.
// Find the element that the position belongs to and suggest that field's type.
if i := indexExprAtPos(c.pos, lit.Elts); i < t.NumFields() {
return t.Field(i).Type()
}
}
return nil
}
// expectedType returns the expected type for an expression at the query position.
func expectedType(path []ast.Node, pos token.Pos, info *types.Info) types.Type {
for i, node := range path {
if i == 2 {
break
}
switch expr := node.(type) {
case *ast.BinaryExpr:
// Determine if query position comes from left or right of op.
e := expr.X
if pos < expr.OpPos {
e = expr.Y
}
if tv, ok := info.Types[e]; ok {
return tv.Type
}
case *ast.AssignStmt:
// Only rank completions if you are on the right side of the token.
if pos <= expr.TokPos {
break
}
i := indexExprAtPos(pos, expr.Rhs)
if i >= len(expr.Lhs) {
i = len(expr.Lhs) - 1
}
if tv, ok := info.Types[expr.Lhs[i]]; ok {
return tv.Type
}
case *ast.CallExpr:
if tv, ok := info.Types[expr.Fun]; ok {
if sig, ok := tv.Type.(*types.Signature); ok {
if sig.Params().Len() == 0 {
return nil
}
i := indexExprAtPos(pos, expr.Args)
// Make sure not to run past the end of expected parameters.
if i >= sig.Params().Len() {
i = sig.Params().Len() - 1
}
return sig.Params().At(i).Type()
}
}
}
}
return nil
}
// preferTypeNames checks if given token position is inside func receiver,
// type params, or type results. For example:
//
// func (<>) foo(<>) (<>) {}
//
func preferTypeNames(path []ast.Node, pos token.Pos) bool {
for _, p := range path {
switch n := p.(type) {
case *ast.FuncDecl:
if r := n.Recv; r != nil && r.Pos() <= pos && pos <= r.End() {
return true
}
if t := n.Type; t != nil {
if p := t.Params; p != nil && p.Pos() <= pos && pos <= p.End() {
return true
}
if r := t.Results; r != nil && r.Pos() <= pos && pos <= r.End() {
return true
}
}
return false
}
}
return false
}
// matchingTypes reports whether actual is a good candidate type
// for a completion in a context of the expected type.
func (c *completer) matchingType(actual types.Type) bool {
if c.expectedType == nil {
return false
}
// Use a function's return type as its type.
if sig, ok := actual.(*types.Signature); ok {
if sig.Results().Len() == 1 {
actual = sig.Results().At(0).Type()
}
}
return types.Identical(types.Default(c.expectedType), types.Default(actual))
}