1
0
mirror of https://github.com/golang/go synced 2024-10-05 00:21:21 -06:00
go/src/lib/fmt/print.go

706 lines
18 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fmt implements formatted I/O with functions analogous
// to C's printf. Because of reflection knowledge it does not need
// to be told about sizes and signedness (no %llud etc. - just %d).
// Still to do: document the formats properly. For now, like C but:
// - don't need l or u flags - type of integer tells that.
// - %v prints any value using its native format.
// - for each Printf-like fn, there is also a Print fn that takes no format
// and is equivalent to saying %v for every operand.
// - another variant Println inserts blanks and appends a newline.
// - if an operand implements method String() that method will
// be used for %v, %s, or Print etc.
// - if an operand implements interface Formatter, that interface can
// be used for fine control of formatting.
package fmt
import (
"fmt";
"io";
"os";
"reflect";
"utf8";
)
// Formatter represents the printer state passed to custom formatters.
// It provides access to the io.Writer interface plus information about
// the flags and options for the operand's format specifier.
2009-01-20 15:40:40 -07:00
type Formatter interface {
// Write is the function to call to emit formatted output to be printed.
Write(b []byte) (ret int, err os.Error);
// Width returns the value of the width option and whether it has been set.
Width() (wid int, ok bool);
// Precision returns the value of the precision option and whether it has been set.
Precision() (prec int, ok bool);
// Flag returns whether the flag c, a character, has been set.
Flag(int) bool;
}
// Format is the interface implemented by objects with a custom formatter.
// The implementation of Format may call Sprintf or Fprintf(f) etc.
// to generate its output.
2009-01-20 15:40:40 -07:00
type Format interface {
Format(f Formatter, c int);
}
// String represents any object being printed that has a String() method that
// returns a string, which defines the ``native'' format for that object.
// Any such object will be printed using that method if passed
// as operand to a %s or %v format or to an unformatted printer such as Print.
type Stringer interface {
String() string
}
const runeSelf = utf8.RuneSelf
const allocSize = 32
type pp struct {
n int;
buf []byte;
fmt *Fmt;
}
func newPrinter() *pp {
p := new(pp);
p.fmt = fmt.New();
return p;
}
func (p *pp) Width() (wid int, ok bool) {
return p.fmt.wid, p.fmt.wid_present
}
func (p *pp) Precision() (prec int, ok bool) {
return p.fmt.prec, p.fmt.prec_present
}
func (p *pp) Flag(b int) bool {
switch b {
case '-':
return p.fmt.minus;
case '+':
return p.fmt.plus;
case '#':
return p.fmt.sharp;
case ' ':
return p.fmt.space;
case '0':
return p.fmt.zero;
}
return false
}
func (p *pp) ensure(n int) {
if len(p.buf) < n {
newn := allocSize + len(p.buf);
if newn < n {
newn = n + allocSize
}
2009-01-06 16:19:02 -07:00
b := make([]byte, newn);
for i := 0; i < p.n; i++ {
b[i] = p.buf[i];
}
p.buf = b;
}
}
func (p *pp) addstr(s string) {
n := len(s);
p.ensure(p.n + n);
for i := 0; i < n; i++ {
p.buf[p.n] = s[i];
p.n++;
}
}
func (p *pp) addbytes(b []byte, start, end int) {
p.ensure(p.n + end-start);
for i := start; i < end; i++ {
p.buf[p.n] = b[i];
p.n++;
}
}
func (p *pp) add(c int) {
p.ensure(p.n + 1);
if c < runeSelf {
p.buf[p.n] = byte(c);
p.n++;
} else {
p.addstr(string(c));
}
}
// Implement Write so we can call fprintf on a P, for
// recursive use in custom verbs.
func (p *pp) Write(b []byte) (ret int, err os.Error) {
p.addbytes(b, 0, len(b));
return len(b), nil;
}
func (p *pp) doprintf(format string, v reflect.StructValue);
func (p *pp) doprint(v reflect.StructValue, addspace, addnewline bool);
// These routines end in 'f' and take a format string.
// Fprintf formats according to a format specifier and writes to w.
func Fprintf(w io.Writer, format string, a ...) (n int, error os.Error) {
v := reflect.NewValue(a).(reflect.StructValue);
p := newPrinter();
p.doprintf(format, v);
n, error = w.Write(p.buf[0:p.n]);
return n, error;
}
// Printf formats according to a format specifier and writes to standard output.
func Printf(format string, v ...) (n int, errno os.Error) {
n, errno = Fprintf(os.Stdout, format, v);
return n, errno;
}
// Sprintf formats according to a format specifier and returns the resulting string.
2009-01-20 15:40:40 -07:00
func Sprintf(format string, a ...) string {
v := reflect.NewValue(a).(reflect.StructValue);
p := newPrinter();
p.doprintf(format, v);
s := string(p.buf)[0 : p.n];
return s;
}
// These routines do not take a format string
// Fprint formats using the default formats for its operands and writes to w.
// Spaces are added between operands when neither is a string.
func Fprint(w io.Writer, a ...) (n int, error os.Error) {
v := reflect.NewValue(a).(reflect.StructValue);
p := newPrinter();
p.doprint(v, false, false);
n, error = w.Write(p.buf[0:p.n]);
return n, error;
}
// Print formats using the default formats for its operands and writes to standard output.
// Spaces are added between operands when neither is a string.
func Print(v ...) (n int, errno os.Error) {
n, errno = Fprint(os.Stdout, v);
return n, errno;
}
// Sprint formats using the default formats for its operands and returns the resulting string.
// Spaces are added between operands when neither is a string.
2009-01-20 15:40:40 -07:00
func Sprint(a ...) string {
v := reflect.NewValue(a).(reflect.StructValue);
p := newPrinter();
p.doprint(v, false, false);
s := string(p.buf)[0 : p.n];
return s;
}
// These routines end in 'ln', do not take a format string,
// always add spaces between operands, and add a newline
// after the last operand.
// Fprintln formats using the default formats for its operands and writes to w.
// Spaces are always added between operands and a newline is appended.
func Fprintln(w io.Writer, a ...) (n int, error os.Error) {
v := reflect.NewValue(a).(reflect.StructValue);
p := newPrinter();
p.doprint(v, true, true);
n, error = w.Write(p.buf[0:p.n]);
return n, error;
}
// Println formats using the default formats for its operands and writes to standard output.
// Spaces are always added between operands and a newline is appended.
func Println(v ...) (n int, errno os.Error) {
n, errno = Fprintln(os.Stdout, v);
return n, errno;
}
// Sprintln formats using the default formats for its operands and returns the resulting string.
// Spaces are always added between operands and a newline is appended.
2009-01-20 15:40:40 -07:00
func Sprintln(a ...) string {
v := reflect.NewValue(a).(reflect.StructValue);
p := newPrinter();
p.doprint(v, true, true);
s := string(p.buf)[0 : p.n];
return s;
}
// Get the i'th arg of the struct value.
// If the arg itself is an interface, return a value for
// the thing inside the interface, not the interface itself.
func getField(v reflect.StructValue, i int) reflect.Value {
val := v.Field(i);
if val.Kind() == reflect.InterfaceKind {
inter := val.(reflect.InterfaceValue).Get();
return reflect.NewValue(inter);
}
return val;
}
// Getters for the fields of the argument structure.
func getBool(v reflect.Value) (val bool, ok bool) {
switch v.Kind() {
case reflect.BoolKind:
return v.(reflect.BoolValue).Get(), true;
}
return false, false
}
func getInt(v reflect.Value) (val int64, signed, ok bool) {
switch v.Kind() {
case reflect.IntKind:
return int64(v.(reflect.IntValue).Get()), true, true;
case reflect.Int8Kind:
return int64(v.(reflect.Int8Value).Get()), true, true;
case reflect.Int16Kind:
return int64(v.(reflect.Int16Value).Get()), true, true;
case reflect.Int32Kind:
return int64(v.(reflect.Int32Value).Get()), true, true;
case reflect.Int64Kind:
return int64(v.(reflect.Int64Value).Get()), true, true;
case reflect.UintKind:
return int64(v.(reflect.UintValue).Get()), false, true;
case reflect.Uint8Kind:
return int64(v.(reflect.Uint8Value).Get()), false, true;
case reflect.Uint16Kind:
return int64(v.(reflect.Uint16Value).Get()), false, true;
case reflect.Uint32Kind:
return int64(v.(reflect.Uint32Value).Get()), false, true;
case reflect.Uint64Kind:
return int64(v.(reflect.Uint64Value).Get()), false, true;
case reflect.UintptrKind:
return int64(v.(reflect.UintptrValue).Get()), false, true;
}
return 0, false, false;
}
func getString(v reflect.Value) (val string, ok bool) {
switch v.Kind() {
case reflect.StringKind:
return v.(reflect.StringValue).Get(), true;
case reflect.ArrayKind:
if val, ok := v.Interface().([]byte); ok {
return string(val), true;
}
}
return "", false;
}
func getFloat32(v reflect.Value) (val float32, ok bool) {
switch v.Kind() {
case reflect.Float32Kind:
return float32(v.(reflect.Float32Value).Get()), true;
case reflect.FloatKind:
if v.Type().Size()*8 == 32 {
return float32(v.(reflect.FloatValue).Get()), true;
}
}
return 0.0, false;
}
func getFloat64(v reflect.Value) (val float64, ok bool) {
switch v.Kind() {
case reflect.FloatKind:
if v.Type().Size()*8 == 64 {
return float64(v.(reflect.FloatValue).Get()), true;
}
case reflect.Float64Kind:
return float64(v.(reflect.Float64Value).Get()), true;
}
return 0.0, false;
}
func getPtr(v reflect.Value) (val uintptr, ok bool) {
switch v.Kind() {
case reflect.PtrKind:
return uintptr(v.(reflect.PtrValue).Get()), true;
}
return 0, false;
}
func getArrayPtr(v reflect.Value) (val reflect.ArrayValue, ok bool) {
if v.Kind() == reflect.PtrKind {
v = v.(reflect.PtrValue).Sub();
if v.Kind() == reflect.ArrayKind {
return v.(reflect.ArrayValue), true;
}
}
return nil, false;
}
func getArray(v reflect.Value) (val reflect.ArrayValue, ok bool) {
switch v.Kind() {
case reflect.ArrayKind:
return v.(reflect.ArrayValue), true;
}
return nil, false;
}
// Convert ASCII to integer. n is 0 (and got is false) if no number present.
func parsenum(s string, start, end int) (n int, got bool, newi int) {
if start >= end {
return 0, false, end
}
isnum := false;
num := 0;
for '0' <= s[start] && s[start] <= '9' {
num = num*10 + int(s[start] - '0');
start++;
isnum = true;
}
return num, isnum, start;
}
func (p *pp) printField(field reflect.Value) (was_string bool) {
inter := field.Interface();
if inter != nil {
if stringer, ok := inter.(Stringer); ok {
p.addstr(stringer.String());
return false; // this value is not a string
}
}
s := "";
switch field.Kind() {
case reflect.BoolKind:
s = p.fmt.Fmt_boolean(field.(reflect.BoolValue).Get()).Str();
case reflect.IntKind, reflect.Int8Kind, reflect.Int16Kind, reflect.Int32Kind, reflect.Int64Kind:
v, signed, ok := getInt(field);
s = p.fmt.Fmt_d64(v).Str();
case reflect.UintKind, reflect.Uint8Kind, reflect.Uint16Kind, reflect.Uint32Kind, reflect.Uint64Kind:
v, signed, ok := getInt(field);
s = p.fmt.Fmt_ud64(uint64(v)).Str();
case reflect.UintptrKind:
v, signed, ok := getInt(field);
p.fmt.sharp = !p.fmt.sharp; // turn 0x on by default
s = p.fmt.Fmt_ux64(uint64(v)).Str();
case reflect.Float32Kind:
v, ok := getFloat32(field);
s = p.fmt.Fmt_g32(v).Str();
case reflect.Float64Kind:
v, ok := getFloat64(field);
s = p.fmt.Fmt_g64(v).Str();
case reflect.FloatKind:
if field.Type().Size()*8 == 32 {
v, ok := getFloat32(field);
s = p.fmt.Fmt_g32(v).Str();
} else {
v, ok := getFloat64(field);
s = p.fmt.Fmt_g64(v).Str();
}
case reflect.StringKind:
v, ok := getString(field);
s = p.fmt.Fmt_s(v).Str();
was_string = true;
case reflect.PtrKind:
if v, ok := getPtr(field); v == 0 {
s = "<nil>"
} else {
// pointer to array? (TODO(r): holdover; delete?)
if a, ok := getArrayPtr(field); ok {
p.addstr("&[");
for i := 0; i < a.Len(); i++ {
if i > 0 {
p.addstr(" ");
}
p.printField(a.Elem(i));
}
p.addstr("]");
} else {
p.fmt.sharp = !p.fmt.sharp; // turn 0x on by default
s = p.fmt.Fmt_uX64(uint64(v)).Str();
}
}
case reflect.ArrayKind:
if a, ok := getArray(field); ok {
p.addstr("[");
for i := 0; i < a.Len(); i++ {
if i > 0 {
p.addstr(" ");
}
p.printField(a.Elem(i));
}
p.addstr("]");
}
case reflect.StructKind:
p.add('{');
v := field.(reflect.StructValue);
t := v.Type().(reflect.StructType);
donames := p.fmt.plus;
p.fmt.clearflags(); // clear flags for p.printField
for i := 0; i < v.Len(); i++ {
if i > 0 {
p.add(' ')
}
if donames {
if name, typ, tag, off := t.Field(i); name != "" {
p.addstr(name);
p.add('=');
}
}
p.printField(getField(v, i));
}
p.add('}');
case reflect.InterfaceKind:
value := field.(reflect.InterfaceValue).Value();
if value == nil {
s = "<nil>"
} else {
return p.printField(value);
}
default:
s = "?" + field.Type().String() + "?";
}
p.addstr(s);
return was_string;
}
func (p *pp) doprintf(format string, v reflect.StructValue) {
p.ensure(len(format)); // a good starting size
end := len(format) - 1;
fieldnum := 0; // we process one field per non-trivial format
for i := 0; i <= end; {
c, w := utf8.DecodeRuneInString(format, i);
if c != '%' || i == end {
p.add(c);
i += w;
continue;
}
i++;
// flags and widths
p.fmt.clearflags();
F: for ; i < end; i++ {
switch format[i] {
case '#':
p.fmt.sharp = true;
case '0':
p.fmt.zero = true;
case '+':
p.fmt.plus = true;
case '-':
p.fmt.minus = true;
case ' ':
p.fmt.space = true;
default:
break F;
}
}
// do we have 20 (width)?
p.fmt.wid, p.fmt.wid_present, i = parsenum(format, i, end);
// do we have .20 (precision)?
if i < end && format[i] == '.' {
p.fmt.prec, p.fmt.prec_present, i = parsenum(format, i+1, end);
}
c, w = utf8.DecodeRuneInString(format, i);
i += w;
// percent is special - absorbs no operand
if c == '%' {
p.add('%'); // TODO: should we bother with width & prec?
continue;
}
if fieldnum >= v.Len() { // out of operands
p.add('%');
p.add(c);
p.addstr("(missing)");
continue;
}
field := getField(v, fieldnum);
fieldnum++;
inter := field.Interface();
if inter != nil && c != 'T' { // don't want thing to describe itself if we're asking for its type
if formatter, ok := inter.(Format); ok {
formatter.Format(p, c);
continue;
}
}
s := "";
switch c {
// bool
case 't':
if v, ok := getBool(field); ok {
if v {
s = "true";
} else {
s = "false";
}
} else {
goto badtype;
}
// int
case 'b':
if v, signed, ok := getInt(field); ok {
s = p.fmt.Fmt_b64(uint64(v)).Str() // always unsigned
} else if v, ok := getFloat32(field); ok {
s = p.fmt.Fmt_fb32(v).Str()
} else if v, ok := getFloat64(field); ok {
s = p.fmt.Fmt_fb64(v).Str()
} else {
goto badtype
}
case 'c':
if v, signed, ok := getInt(field); ok {
s = p.fmt.Fmt_c(int(v)).Str()
} else {
goto badtype
}
case 'd':
if v, signed, ok := getInt(field); ok {
if signed {
s = p.fmt.Fmt_d64(v).Str()
} else {
s = p.fmt.Fmt_ud64(uint64(v)).Str()
}
} else {
goto badtype
}
case 'o':
if v, signed, ok := getInt(field); ok {
if signed {
s = p.fmt.Fmt_o64(v).Str()
} else {
s = p.fmt.Fmt_uo64(uint64(v)).Str()
}
} else {
goto badtype
}
case 'x':
if v, signed, ok := getInt(field); ok {
if signed {
s = p.fmt.Fmt_x64(v).Str()
} else {
s = p.fmt.Fmt_ux64(uint64(v)).Str()
}
} else if v, ok := getString(field); ok {
s = p.fmt.Fmt_sx(v).Str();
} else {
goto badtype
}
case 'X':
if v, signed, ok := getInt(field); ok {
if signed {
s = p.fmt.Fmt_X64(v).Str()
} else {
s = p.fmt.Fmt_uX64(uint64(v)).Str()
}
} else if v, ok := getString(field); ok {
s = p.fmt.Fmt_sX(v).Str();
} else {
goto badtype
}
// float
case 'e':
if v, ok := getFloat32(field); ok {
s = p.fmt.Fmt_e32(v).Str()
} else if v, ok := getFloat64(field); ok {
s = p.fmt.Fmt_e64(v).Str()
} else {
goto badtype
}
case 'f':
if v, ok := getFloat32(field); ok {
s = p.fmt.Fmt_f32(v).Str()
} else if v, ok := getFloat64(field); ok {
s = p.fmt.Fmt_f64(v).Str()
} else {
goto badtype
}
case 'g':
if v, ok := getFloat32(field); ok {
s = p.fmt.Fmt_g32(v).Str()
} else if v, ok := getFloat64(field); ok {
s = p.fmt.Fmt_g64(v).Str()
} else {
goto badtype
}
// string
case 's':
if inter != nil {
// if object implements String, use the result.
if stringer, ok := inter.(Stringer); ok {
s = p.fmt.Fmt_s(stringer.String()).Str();
break;
}
}
if v, ok := getString(field); ok {
s = p.fmt.Fmt_s(v).Str()
} else {
goto badtype
}
case 'q':
if v, ok := getString(field); ok {
s = p.fmt.Fmt_q(v).Str()
} else {
goto badtype
}
// pointer
case 'p':
if v, ok := getPtr(field); ok {
if v == 0 {
s = "<nil>"
} else {
s = "0x" + p.fmt.Fmt_uX64(uint64(v)).Str()
}
} else {
goto badtype
}
// arbitrary value; do your best
case 'v':
p.printField(field);
// the value's type
case 'T':
s = field.Type().String();
default:
badtype:
s = "%" + string(c) + "(" + field.Type().String() + ")%";
}
p.addstr(s);
}
if fieldnum < v.Len() {
p.addstr("?(extra ");
for ; fieldnum < v.Len(); fieldnum++ {
p.addstr(getField(v, fieldnum).Type().String());
if fieldnum + 1 < v.Len() {
p.addstr(", ");
}
}
p.addstr(")");
}
}
func (p *pp) doprint(v reflect.StructValue, addspace, addnewline bool) {
prev_string := false;
for fieldnum := 0; fieldnum < v.Len(); fieldnum++ {
// always add spaces if we're doing println
field := getField(v, fieldnum);
if fieldnum > 0 {
if addspace {
p.add(' ')
} else if field.Kind() != reflect.StringKind && !prev_string{
// if not doing println, add spaces if neither side is a string
p.add(' ')
}
}
was_string := p.printField(field);
prev_string = was_string;
}
if addnewline {
p.add('\n')
}
}