1
0
mirror of https://github.com/golang/go synced 2024-11-14 08:50:22 -07:00
go/src/math/exp_s390x.s

186 lines
5.0 KiB
ArmAsm
Raw Normal View History

math: use SIMD to accelerate additional scalar math functions on s390x As necessary, math functions were structured to use stubs, so that they can be accelerated with assembly on any platform. Technique used was minimax polynomial approximation using tables of polynomial coefficients, with argument range reduction. Benchmark New Old Speedup BenchmarkAcos 12.2 47.5 3.89 BenchmarkAcosh 18.5 56.2 3.04 BenchmarkAsin 13.1 40.6 3.10 BenchmarkAsinh 19.4 62.8 3.24 BenchmarkAtan 10.1 23 2.28 BenchmarkAtanh 19.1 53.2 2.79 BenchmarkAtan2 16.5 33.9 2.05 BenchmarkCbrt 14.8 58 3.92 BenchmarkErf 10.8 20.1 1.86 BenchmarkErfc 11.2 23.5 2.10 BenchmarkExp 8.77 53.8 6.13 BenchmarkExpm1 10.1 38.3 3.79 BenchmarkLog 13.1 40.1 3.06 BenchmarkLog1p 12.7 38.3 3.02 BenchmarkPowInt 31.7 40.5 1.28 BenchmarkPowFrac 33.1 141 4.26 BenchmarkTan 11.5 30 2.61 Accuracy was tested against a high precision reference function to determine maximum error. Note: ulperr is error in "units in the last place" max ulperr Acos 1.15 Acosh 1.07 Asin 2.22 Asinh 1.72 Atan 1.41 Atanh 3.00 Atan2 1.45 Cbrt 1.18 Erf 1.29 Erfc 4.82 Exp 1.00 Expm1 2.26 Log 0.94 Log1p 2.39 Tan 3.14 Pow will have 99.99% correctly rounded results with reasonable inputs producing numeric (non Inf or NaN) results Change-Id: I850e8cf7b70426e8b54ec49d74acd4cddc8c6cb2 Reviewed-on: https://go-review.googlesource.com/38585 Reviewed-by: Michael Munday <munday@ca.ibm.com> Run-TryBot: Michael Munday <munday@ca.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org>
2017-03-24 14:43:02 -06:00
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// Minimax polynomial approximation and other constants
DATA ·exprodataL22<> + 0(SB)/8, $800.0E+00
DATA ·exprodataL22<> + 8(SB)/8, $1.0000000000000022e+00
DATA ·exprodataL22<> + 16(SB)/8, $0.500000000000004237e+00
DATA ·exprodataL22<> + 24(SB)/8, $0.166666666630345592e+00
DATA ·exprodataL22<> + 32(SB)/8, $0.138926439368309441e-02
DATA ·exprodataL22<> + 40(SB)/8, $0.833349307718286047e-02
DATA ·exprodataL22<> + 48(SB)/8, $0.416666664838056960e-01
DATA ·exprodataL22<> + 56(SB)/8, $-.231904681384629956E-16
DATA ·exprodataL22<> + 64(SB)/8, $-.693147180559945286E+00
DATA ·exprodataL22<> + 72(SB)/8, $0.144269504088896339E+01
DATA ·exprodataL22<> + 80(SB)/8, $704.0E+00
GLOBL ·exprodataL22<> + 0(SB), RODATA, $88
DATA ·expxinf<> + 0(SB)/8, $0x7ff0000000000000
GLOBL ·expxinf<> + 0(SB), RODATA, $8
DATA ·expx4ff<> + 0(SB)/8, $0x4ff0000000000000
GLOBL ·expx4ff<> + 0(SB), RODATA, $8
DATA ·expx2ff<> + 0(SB)/8, $0x2ff0000000000000
GLOBL ·expx2ff<> + 0(SB), RODATA, $8
DATA ·expxaddexp<> + 0(SB)/8, $0xc2f0000100003fef
GLOBL ·expxaddexp<> + 0(SB), RODATA, $8
// Log multipliers table
DATA ·exptexp<> + 0(SB)/8, $0.442737824274138381E-01
DATA ·exptexp<> + 8(SB)/8, $0.263602189790660309E-01
DATA ·exptexp<> + 16(SB)/8, $0.122565642281703586E-01
DATA ·exptexp<> + 24(SB)/8, $0.143757052860721398E-02
DATA ·exptexp<> + 32(SB)/8, $-.651375034121276075E-02
DATA ·exptexp<> + 40(SB)/8, $-.119317678849450159E-01
DATA ·exptexp<> + 48(SB)/8, $-.150868749549871069E-01
DATA ·exptexp<> + 56(SB)/8, $-.161992609578469234E-01
DATA ·exptexp<> + 64(SB)/8, $-.154492360403337917E-01
DATA ·exptexp<> + 72(SB)/8, $-.129850717389178721E-01
DATA ·exptexp<> + 80(SB)/8, $-.892902649276657891E-02
DATA ·exptexp<> + 88(SB)/8, $-.338202636596794887E-02
DATA ·exptexp<> + 96(SB)/8, $0.357266307045684762E-02
DATA ·exptexp<> + 104(SB)/8, $0.118665304327406698E-01
DATA ·exptexp<> + 112(SB)/8, $0.214434994118118914E-01
DATA ·exptexp<> + 120(SB)/8, $0.322580645161290314E-01
GLOBL ·exptexp<> + 0(SB), RODATA, $128
// Exp returns e**x, the base-e exponential of x.
//
// Special cases are:
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
// Very large values overflow to 0 or +Inf.
// Very small values underflow to 1.
// The algorithm used is minimax polynomial approximation using a table of
// polynomial coefficients determined with a Remez exchange algorithm.
TEXT ·expAsm(SB), NOSPLIT, $0-16
FMOVD x+0(FP), F0
MOVD $·exprodataL22<>+0(SB), R5
WORD $0xB3120000 //ltdbr %f0,%f0
BLTU L20
FMOVD F0, F2
L2:
WORD $0xED205050 //cdb %f2,.L23-.L22(%r5)
BYTE $0x00
BYTE $0x19
BGE L16
BVS L16
WFCEDBS V2, V2, V2
BVS LEXITTAGexp
MOVD $·expxaddexp<>+0(SB), R1
FMOVD 72(R5), F6
FMOVD 0(R1), F2
WFMSDB V0, V6, V2, V6
FMOVD 64(R5), F4
FADD F6, F2
FMOVD 56(R5), F1
FMADD F4, F2, F0
FMOVD 48(R5), F3
WFMADB V2, V1, V0, V2
FMOVD 40(R5), F1
FMOVD 32(R5), F4
FMUL F0, F0
WFMADB V2, V4, V1, V4
WORD $0xB3CD0016 //lgdr %r1,%f6
FMOVD 24(R5), F1
WFMADB V2, V3, V1, V3
FMOVD 16(R5), F1
WFMADB V0, V4, V3, V4
FMOVD 8(R5), F3
WFMADB V2, V1, V3, V1
WORD $0xEC3139BC //risbg %r3,%r1,57,128+60,3
BYTE $0x03
BYTE $0x55
WFMADB V0, V4, V1, V0
MOVD $·exptexp<>+0(SB), R2
WORD $0x68432000 //ld %f4,0(%r3,%r2)
FMADD F4, F2, F2
SLD $48, R1, R2
WFMADB V2, V0, V4, V2
WORD $0xB3C10002 //ldgr %f0,%r2
FMADD F0, F2, F0
FMOVD F0, ret+8(FP)
RET
L16:
WFCEDBS V2, V2, V4
BVS LEXITTAGexp
WORD $0xED205000 //cdb %f2,.L33-.L22(%r5)
BYTE $0x00
BYTE $0x19
BLT L6
WFCEDBS V2, V0, V0
BVS L13
MOVD $·expxinf<>+0(SB), R1
FMOVD 0(R1), F0
FMOVD F0, ret+8(FP)
RET
L20:
WORD $0xB3130020 //lcdbr %f2,%f0
BR L2
L6:
MOVD $·expxaddexp<>+0(SB), R1
FMOVD 72(R5), F3
FMOVD 0(R1), F4
WFMSDB V0, V3, V4, V3
FMOVD 64(R5), F6
FADD F3, F4
FMOVD 56(R5), F5
WFMADB V4, V6, V0, V6
FMOVD 32(R5), F1
WFMADB V4, V5, V6, V4
FMOVD 40(R5), F5
FMUL F6, F6
WFMADB V4, V1, V5, V1
FMOVD 48(R5), F7
WORD $0xB3CD0013 //lgdr %r1,%f3
FMOVD 24(R5), F5
WFMADB V4, V7, V5, V7
FMOVD 16(R5), F5
WFMADB V6, V1, V7, V1
FMOVD 8(R5), F7
WFMADB V4, V5, V7, V5
WORD $0xEC3139BC //risbg %r3,%r1,57,128+60,3
BYTE $0x03
BYTE $0x55
WFMADB V6, V1, V5, V6
MOVD $·exptexp<>+0(SB), R2
WFCHDBS V2, V0, V0
WORD $0x68132000 //ld %f1,0(%r3,%r2)
FMADD F1, F4, F4
MOVD $0x4086000000000000, R2
WFMADB V4, V6, V1, V4
BEQ L21
ADDW $0xF000, R1
WORD $0xEC21000F //risbgn %r2,%r1,64-64+0,64-64+0+16-1,64-0-16
BYTE $0x30
BYTE $0x59
WORD $0xB3C10002 //ldgr %f0,%r2
FMADD F0, F4, F0
MOVD $·expx4ff<>+0(SB), R3
FMOVD 0(R3), F2
FMUL F2, F0
FMOVD F0, ret+8(FP)
RET
L13:
FMOVD $0, F0
FMOVD F0, ret+8(FP)
RET
L21:
ADDW $0x1000, R1
WORD $0xEC21000F //risbgn %r2,%r1,64-64+0,64-64+0+16-1,64-0-16
BYTE $0x30
BYTE $0x59
WORD $0xB3C10002 //ldgr %f0,%r2
FMADD F0, F4, F0
MOVD $·expx2ff<>+0(SB), R3
FMOVD 0(R3), F2
FMUL F2, F0
FMOVD F0, ret+8(FP)
RET
LEXITTAGexp:
FMOVD F0, ret+8(FP)
RET