1
0
mirror of https://github.com/golang/go synced 2024-11-19 02:44:44 -07:00
go/pointer/gen.go

1074 lines
30 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pointer
// This file defines the constraint generation phase.
import (
"fmt"
"go/ast"
"go/token"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/ssa"
)
var (
tEface = types.NewInterface(nil)
tInvalid = types.Typ[types.Invalid]
tUnsafePtr = types.Typ[types.UnsafePointer]
)
// ---------- Node creation ----------
// nextNode returns the index of the next unused node.
func (a *analysis) nextNode() nodeid {
return nodeid(len(a.nodes))
}
// addNodes creates nodes for all scalar elements in type typ, and
// returns the id of the first one, or zero if the type was
// analytically uninteresting.
//
// comment explains the origin of the nodes, as a debugging aid.
//
func (a *analysis) addNodes(typ types.Type, comment string) nodeid {
id := a.nextNode()
for _, fi := range a.flatten(typ) {
a.addOneNode(fi.typ, comment, fi)
}
if id == a.nextNode() {
return 0 // type contained no pointers
}
return id
}
// addOneNode creates a single node with type typ, and returns its id.
//
// typ should generally be scalar (except for interface.conctype nodes
// and struct/array identity nodes). Use addNodes for non-scalar types.
//
// comment explains the origin of the nodes, as a debugging aid.
// subelement indicates the subelement, e.g. ".a.b[*].c".
//
func (a *analysis) addOneNode(typ types.Type, comment string, subelement *fieldInfo) nodeid {
id := a.nextNode()
a.nodes = append(a.nodes, &node{typ: typ, subelement: subelement})
if a.log != nil {
fmt.Fprintf(a.log, "\tcreate n%d %s for %s%s\n",
id, typ, comment, subelement.path())
}
return id
}
// setValueNode associates node id with the value v.
// TODO(adonovan): disambiguate v by its CallGraphNode, if it's a local.
func (a *analysis) setValueNode(v ssa.Value, id nodeid) {
a.valNode[v] = id
if a.log != nil {
fmt.Fprintf(a.log, "\tval[%s] = n%d (%T)\n", v.Name(), id, v)
}
// Record the (v, id) relation if the client has queried v.
qv := a.config.QueryValues
if ptrs, ok := qv[v]; ok {
qv[v] = append(ptrs, ptr{a, id})
}
}
// endObject marks the end of a sequence of calls to addNodes denoting
// a single object allocation.
//
// obj is the start node of the object, from a prior call to nextNode.
// Its size, flags and (optionally) data will be updated.
//
func (a *analysis) endObject(obj nodeid, data ssa.Value) {
// Ensure object is non-empty by padding;
// the pad will be the object node.
size := uint32(a.nextNode() - obj)
if size == 0 {
a.addOneNode(tInvalid, "padding", nil)
}
objNode := a.nodes[obj]
objNode.size = size // excludes padding
objNode.flags = ntObject
if data != nil {
objNode.data = data
if a.log != nil {
fmt.Fprintf(a.log, "\tobj[%s] = n%d\n", data, obj)
}
}
}
// makeFunctionObject creates and returns a new function object for
// fn, and returns the id of its first node. It also enqueues fn for
// subsequent constraint generation.
//
func (a *analysis) makeFunctionObject(fn *ssa.Function) nodeid {
if a.log != nil {
fmt.Fprintf(a.log, "\t---- makeFunctionObject %s\n", fn)
}
// obj is the function object (identity, params, results).
obj := a.nextNode()
sig := fn.Signature
a.addOneNode(sig, "func.cgnode", nil) // (scalar with Signature type)
if recv := sig.Recv(); recv != nil {
a.addNodes(recv.Type(), "func.recv")
}
a.addNodes(sig.Params(), "func.params")
a.addNodes(sig.Results(), "func.results")
a.endObject(obj, fn)
if a.log != nil {
fmt.Fprintf(a.log, "\t----\n")
}
cgn := &cgnode{fn: fn, obj: obj}
a.nodes[obj].flags |= ntFunction
a.nodes[obj].data = cgn
// Queue it up for constraint processing.
a.genq = append(a.genq, cgn)
return obj
}
// makeFunction creates the shared function object (aka contour) for
// function fn and returns a 'func' value node that points to it.
//
func (a *analysis) makeFunction(fn *ssa.Function) nodeid {
obj := a.makeFunctionObject(fn)
a.funcObj[fn] = obj
var comment string
if a.log != nil {
comment = fn.String()
}
id := a.addOneNode(fn.Type(), comment, nil)
a.addressOf(id, obj)
return id
}
// makeGlobal creates the value node and object node for global g,
// and returns the value node.
//
// The value node represents the address of the global variable, and
// points to the object (and nothing else).
//
// The object consists of the global variable itself (conceptually,
// the BSS address).
//
func (a *analysis) makeGlobal(g *ssa.Global) nodeid {
var comment string
if a.log != nil {
fmt.Fprintf(a.log, "\t---- makeGlobal %s\n", g)
comment = g.FullName()
}
// The nodes representing the object itself.
obj := a.nextNode()
a.addNodes(mustDeref(g.Type()), "global")
a.endObject(obj, g)
if a.log != nil {
fmt.Fprintf(a.log, "\t----\n")
}
// The node representing the address of the global.
id := a.addOneNode(g.Type(), comment, nil)
a.addressOf(id, obj)
return id
}
// makeConstant creates the value node and object node (if needed) for
// constant c, and returns the value node.
// An object node is created only for []byte or []rune constants.
// The value node points to the object node, iff present.
//
func (a *analysis) makeConstant(l *ssa.Const) nodeid {
id := a.addNodes(l.Type(), "const")
if !l.IsNil() {
// []byte or []rune?
if t, ok := l.Type().Underlying().(*types.Slice); ok {
// Treat []T like *[1]T, 'make []T' like new([1]T).
obj := a.nextNode()
a.addNodes(sliceToArray(t), "array in slice constant")
a.endObject(obj, l)
a.addressOf(id, obj)
}
}
return id
}
// valueNode returns the id of the value node for v, creating it (and
// the association) as needed. It may return zero for uninteresting
// values containing no pointers.
//
// Nodes for locals are created en masse during genFunc and are
// implicitly contextualized by the function currently being analyzed
// (i.e. parameter to genFunc).
//
func (a *analysis) valueNode(v ssa.Value) nodeid {
id, ok := a.valNode[v]
if !ok {
switch v := v.(type) {
case *ssa.Function:
id = a.makeFunction(v)
case *ssa.Global:
id = a.makeGlobal(v)
case *ssa.Const:
id = a.makeConstant(v)
case *ssa.Capture:
// TODO(adonovan): treat captures context-sensitively.
id = a.addNodes(v.Type(), "capture")
default:
// *ssa.Parameters and ssa.Instruction values
// are created by genFunc.
// *Builtins are not true values.
panic(v)
}
a.setValueNode(v, id)
}
return id
}
// valueOffsetNode ascertains the node for tuple/struct value v,
// then returns the node for its subfield #index.
//
func (a *analysis) valueOffsetNode(v ssa.Value, index int) nodeid {
id := a.valueNode(v)
if id == 0 {
panic(fmt.Sprintf("cannot offset within n0: %s = %s", v.Name(), v))
}
return id + nodeid(a.offsetOf(v.Type(), index))
}
// interfaceValue returns the (first node of) the value, and the
// concrete type, of the interface object (flags&ntInterface) starting
// at id.
//
func (a *analysis) interfaceValue(id nodeid) (nodeid, types.Type) {
n := a.nodes[id]
if n.flags&ntInterface == 0 {
panic(fmt.Sprintf("interfaceValue(n%d): not an interface object; typ=%s", id, n.typ))
}
return id + 1, n.typ
}
// funcParams returns the first node of the params block of the
// function whose object node (flags&ntFunction) is id.
//
func (a *analysis) funcParams(id nodeid) nodeid {
if a.nodes[id].flags&ntFunction == 0 {
panic(fmt.Sprintf("funcParams(n%d): not a function object block", id))
}
return id + 1
}
// funcResults returns the first node of the results block of the
// function whose object node (flags&ntFunction) is id.
//
func (a *analysis) funcResults(id nodeid) nodeid {
n := a.nodes[id]
if n.flags&ntFunction == 0 {
panic(fmt.Sprintf("funcResults(n%d): not a function object block", id))
}
sig := n.typ.(*types.Signature)
id += 1 + nodeid(a.sizeof(sig.Params()))
if sig.Recv() != nil {
id += nodeid(a.sizeof(sig.Recv().Type()))
}
return id
}
// ---------- Constraint creation ----------
// copy creates a constraint of the form dst = src.
// sizeof is the width (in logical fields) of the copied type.
//
func (a *analysis) copy(dst, src nodeid, sizeof uint32) {
if src == dst || sizeof == 0 {
return // trivial
}
if src == 0 || dst == 0 {
panic(fmt.Sprintf("ill-typed copy dst=n%d src=n%d", dst, src))
}
for i := uint32(0); i < sizeof; i++ {
a.addConstraint(&copyConstraint{dst, src})
src++
dst++
}
}
// addressOf creates a constraint of the form id = &obj.
func (a *analysis) addressOf(id, obj nodeid) {
if id == 0 {
panic("addressOf: zero id")
}
if obj == 0 {
panic("addressOf: zero obj")
}
a.addConstraint(&addrConstraint{id, obj})
}
// load creates a load constraint of the form dst = *src.
// sizeof is the width (in logical fields) of the loaded type.
//
func (a *analysis) load(dst, src nodeid, sizeof uint32) {
a.loadOffset(dst, src, 0, sizeof)
}
// loadOffset creates a load constraint of the form dst = src[offset].
// offset is the pointer offset in logical fields.
// sizeof is the width (in logical fields) of the loaded type.
//
func (a *analysis) loadOffset(dst, src nodeid, offset uint32, sizeof uint32) {
if dst == 0 {
return // load of non-pointerlike value
}
if src == 0 && dst == 0 {
return // non-pointerlike operation
}
if src == 0 || dst == 0 {
panic(fmt.Sprintf("ill-typed load dst=n%d src=n%d", dst, src))
}
for i := uint32(0); i < sizeof; i++ {
a.addConstraint(&loadConstraint{offset, dst, src})
offset++
dst++
}
}
// store creates a store constraint of the form *dst = src.
// sizeof is the width (in logical fields) of the stored type.
//
func (a *analysis) store(dst, src nodeid, sizeof uint32) {
a.storeOffset(dst, src, 0, sizeof)
}
// storeOffset creates a store constraint of the form dst[offset] = src.
// offset is the pointer offset in logical fields.
// sizeof is the width (in logical fields) of the stored type.
//
func (a *analysis) storeOffset(dst, src nodeid, offset uint32, sizeof uint32) {
if src == 0 {
return // store of non-pointerlike value
}
if src == 0 && dst == 0 {
return // non-pointerlike operation
}
if src == 0 || dst == 0 {
panic(fmt.Sprintf("ill-typed store dst=n%d src=n%d", dst, src))
}
for i := uint32(0); i < sizeof; i++ {
a.addConstraint(&storeConstraint{offset, dst, src})
offset++
src++
}
}
// offsetAddr creates an offsetAddr constraint of the form dst = &src.#offset.
// offset is the field offset in logical fields.
//
func (a *analysis) offsetAddr(dst, src nodeid, offset uint32) {
if offset == 0 {
// Simplify dst = &src->f0
// to dst = src
// (NB: this optimisation is defeated by the identity
// field prepended to struct and array objects.)
a.copy(dst, src, 1)
} else {
a.addConstraint(&offsetAddrConstraint{offset, dst, src})
}
}
// addConstraint adds c to the constraint set.
func (a *analysis) addConstraint(c constraint) {
a.constraints = append(a.constraints, c)
if a.log != nil {
fmt.Fprintf(a.log, "\t%s\n", c)
}
}
// copyElems generates load/store constraints for *dst = *src,
// where src and dst are slices or *arrays.
// (If pts(·) of either is a known singleton, this is suboptimal.)
//
func (a *analysis) copyElems(typ types.Type, dst, src nodeid) {
tmp := a.addNodes(typ, "copy")
sz := a.sizeof(typ)
a.loadOffset(tmp, src, 1, sz)
a.storeOffset(dst, tmp, 1, sz)
}
// ---------- Constraint generation ----------
// genConv generates constraints for the conversion operation conv.
func (a *analysis) genConv(conv *ssa.Convert) {
res := a.valueNode(conv)
if res == 0 {
return // result is non-pointerlike
}
tSrc := conv.X.Type()
tDst := conv.Type()
switch utSrc := tSrc.Underlying().(type) {
case *types.Slice:
// []byte/[]rune -> string?
return
case *types.Pointer:
// *T -> unsafe.Pointer?
if tDst == tUnsafePtr {
// ignore for now
// a.copy(res, a.valueNode(conv.X), 1)
return
}
case *types.Basic:
switch utDst := tDst.Underlying().(type) {
case *types.Pointer:
// unsafe.Pointer -> *T? (currently unsound)
if utSrc == tUnsafePtr {
a.warnf(conv.Pos(),
"unsound: %s contains an unsafe.Pointer conversion (to %s)",
conv.Parent(), tDst)
// For now, we treat unsafe.Pointer->*T
// conversion like new(T) and create an
// unaliased object. In future we may handle
// unsafe conversions soundly; see TODO file.
obj := a.addNodes(mustDeref(tDst), "unsafe.Pointer conversion")
a.endObject(obj, conv)
a.addressOf(res, obj)
return
}
case *types.Slice:
// string -> []byte/[]rune (or named aliases)?
if utSrc.Info()&types.IsString != 0 {
obj := a.addNodes(sliceToArray(tDst), "convert")
a.endObject(obj, conv)
a.addressOf(res, obj)
return
}
case *types.Basic:
// TODO(adonovan):
// unsafe.Pointer -> uintptr?
// uintptr -> unsafe.Pointer
//
// The language doesn't adequately specify the
// behaviour of these operations, but almost
// all uses of these conversions (even in the
// spec) seem to imply a non-moving garbage
// collection strategy, or implicit "pinning"
// semantics for unsafe.Pointer conversions.
// TODO(adonovan): we need more work before we can handle
// cryptopointers well.
if utSrc == tUnsafePtr || utDst == tUnsafePtr {
// Ignore for now. See TODO file for ideas.
return
}
return // ignore all other basic type conversions
}
}
panic(fmt.Sprintf("illegal *ssa.Convert %s -> %s: %s", tSrc, tDst, conv.Parent()))
}
// genAppend generates constraints for a call to append.
func (a *analysis) genAppend(instr *ssa.Call) {
// Consider z = append(x, y). y is optional.
// This may allocate a new [1]T array; call its object w.
// We get the following constraints:
// z = x
// z = &w
// *z = *y
x := a.valueNode(instr.Call.Args[0])
z := a.valueNode(instr)
a.copy(z, x, 1) // z = x
if len(instr.Call.Args) == 1 {
return // no allocation for z = append(x) or _ = append(x).
}
// TODO(adonovan): test append([]byte, ...string) []byte.
y := a.valueNode(instr.Call.Args[1])
tArray := sliceToArray(instr.Call.Args[0].Type())
var w nodeid
w = a.nextNode()
a.addNodes(tArray, "append")
a.endObject(w, instr)
a.copyElems(tArray.Elem(), z, y) // *z = *y
a.addressOf(z, w) // z = &w
}
// genBuiltinCall generates contraints for a call to a built-in.
func (a *analysis) genBuiltinCall(instr ssa.CallInstruction) {
call := instr.Common()
switch call.Value.(*ssa.Builtin).Object().Name() {
case "append":
// Safe cast: append cannot appear in a go or defer statement.
a.genAppend(instr.(*ssa.Call))
case "copy":
tElem := call.Args[0].Type().Underlying().(*types.Slice).Elem()
a.copyElems(tElem, a.valueNode(call.Args[0]), a.valueNode(call.Args[1]))
case "panic":
a.copy(a.panicNode, a.valueNode(call.Args[0]), 1)
case "recover":
if v := instr.Value(); v != nil {
a.copy(a.valueNode(v), a.panicNode, 1)
}
case "print":
// Analytically print is a no-op, but it's a convenient hook
// for testing the pts of an expression, so we notify the client.
// Existing uses in Go core libraries are few and harmless.
if Print := a.config.Print; Print != nil {
// Due to context-sensitivity, we may encounter
// the same print() call in many contexts, so
// we merge them to a canonical node.
probe := a.probes[call]
t := call.Args[0].Type()
// First time? Create the canonical probe node.
if probe == 0 {
probe = a.addNodes(t, "print")
a.probes[call] = probe
Print(call, ptr{a, probe}) // notify client
}
a.copy(probe, a.valueNode(call.Args[0]), a.sizeof(t))
}
default:
// No-ops: close len cap real imag complex println delete.
}
}
// shouldUseContext defines the context-sensitivity policy. It
// returns true if we should analyse all static calls to fn anew.
//
// Obviously this interface rather limits how much freedom we have to
// choose a policy. The current policy, rather arbitrarily, is true
// for intrinsics and accessor methods (actually: short, single-block,
// call-free functions). This is just a starting point.
//
func (a *analysis) shouldUseContext(fn *ssa.Function) bool {
if a.findIntrinsic(fn) != nil {
return true // treat intrinsics context-sensitively
}
if len(fn.Blocks) != 1 {
return false // too expensive
}
blk := fn.Blocks[0]
if len(blk.Instrs) > 10 {
return false // too expensive
}
if fn.Synthetic != "" && (fn.Pkg == nil || fn != fn.Pkg.Func("init")) {
return true // treat synthetic wrappers context-sensitively
}
for _, instr := range blk.Instrs {
switch instr := instr.(type) {
case ssa.CallInstruction:
// Disallow function calls (except to built-ins)
// because of the danger of unbounded recursion.
if _, ok := instr.Common().Value.(*ssa.Builtin); !ok {
return false
}
}
}
return true
}
// genStaticCall generates constraints for a statically dispatched
// function call. It returns a node whose pts() will be the set of
// possible call targets (in this case, a singleton).
//
func (a *analysis) genStaticCall(call *ssa.CallCommon, result nodeid) nodeid {
// Ascertain the context (contour/CGNode) for a particular call.
var obj nodeid
fn := call.StaticCallee()
if a.shouldUseContext(fn) {
obj = a.makeFunctionObject(fn) // new contour for this call
} else {
a.valueNode(fn) // ensure shared contour was created
obj = a.funcObj[fn] // ordinary (shared) contour.
}
sig := call.Signature()
targets := a.addOneNode(sig, "call.targets", nil)
a.addressOf(targets, obj) // (a singleton)
// Copy receiver, if any.
params := a.funcParams(obj)
args := call.Args
if sig.Recv() != nil {
sz := a.sizeof(sig.Recv().Type())
a.copy(params, a.valueNode(args[0]), sz)
params += nodeid(sz)
args = args[1:]
}
// Copy actual parameters into formal params block.
// Must loop, since the actuals aren't contiguous.
for i, arg := range args {
sz := a.sizeof(sig.Params().At(i).Type())
a.copy(params, a.valueNode(arg), sz)
params += nodeid(sz)
}
// Copy formal results block to actual result.
if result != 0 {
a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
}
return targets
}
// genDynamicCall generates constraints for a dynamic function call.
// It returns a node whose pts() will be the set of possible call targets.
//
func (a *analysis) genDynamicCall(call *ssa.CallCommon, result nodeid) nodeid {
fn := a.valueNode(call.Value)
sig := call.Signature()
// We add dynamic closure rules that store the arguments into,
// and load the results from, the P/R block of each function
// discovered in pts(fn).
var offset uint32 = 1 // P/R block starts at offset 1
for i, arg := range call.Args {
sz := a.sizeof(sig.Params().At(i).Type())
a.storeOffset(fn, a.valueNode(arg), offset, sz)
offset += sz
}
if result != 0 {
a.loadOffset(result, fn, offset, a.sizeof(sig.Results()))
}
return fn
}
// genInvoke generates constraints for a dynamic method invocation.
// It returns a node whose pts() will be the set of possible call targets.
//
func (a *analysis) genInvoke(call *ssa.CallCommon, result nodeid) nodeid {
sig := call.Signature()
// Allocate a contiguous targets/params/results block for this call.
block := a.nextNode()
targets := a.addOneNode(sig, "invoke.targets", nil)
p := a.addNodes(sig.Params(), "invoke.params")
r := a.addNodes(sig.Results(), "invoke.results")
// Copy the actual parameters into the call's params block.
for i, n := 0, sig.Params().Len(); i < n; i++ {
sz := a.sizeof(sig.Params().At(i).Type())
a.copy(p, a.valueNode(call.Args[i]), sz)
p += nodeid(sz)
}
// Copy the call's results block to the actual results.
if result != 0 {
a.copy(result, r, a.sizeof(sig.Results()))
}
// We add a dynamic invoke constraint that will add
// edges from the caller's P/R block to the callee's
// P/R block for each discovered call target.
a.addConstraint(&invokeConstraint{call.Method, a.valueNode(call.Value), block})
return targets
}
// genCall generates contraints for call instruction instr.
func (a *analysis) genCall(caller *cgnode, instr ssa.CallInstruction) {
call := instr.Common()
// Intrinsic implementations of built-in functions.
if _, ok := call.Value.(*ssa.Builtin); ok {
a.genBuiltinCall(instr)
return
}
var result nodeid
if v := instr.Value(); v != nil {
result = a.valueNode(v)
}
// The node whose pts(·) will contain all targets of the call.
var targets nodeid
switch {
case call.StaticCallee() != nil:
targets = a.genStaticCall(call, result)
case call.IsInvoke():
targets = a.genInvoke(call, result)
default:
targets = a.genDynamicCall(call, result)
}
site := &callsite{
caller: caller,
targets: targets,
instr: instr,
pos: instr.Pos(),
}
a.callsites = append(a.callsites, site)
if a.log != nil {
fmt.Fprintf(a.log, "\t%s to targets %s from %s\n",
site.Description(), site.targets, site.caller)
}
}
// genInstr generates contraints for instruction instr in context cgn.
func (a *analysis) genInstr(cgn *cgnode, instr ssa.Instruction) {
if a.log != nil {
var prefix string
if val, ok := instr.(ssa.Value); ok {
prefix = val.Name() + " = "
}
fmt.Fprintf(a.log, "; %s%s\n", prefix, instr)
}
switch instr := instr.(type) {
case *ssa.DebugRef:
// no-op.
case *ssa.UnOp:
switch instr.Op {
case token.ARROW: // <-x
// We can ignore instr.CommaOk because the node we're
// altering is always at zero offset relative to instr.
a.load(a.valueNode(instr), a.valueNode(instr.X), a.sizeof(instr.Type()))
case token.MUL: // *x
a.load(a.valueNode(instr), a.valueNode(instr.X), a.sizeof(instr.Type()))
default:
// NOT, SUB, XOR: no-op.
}
case *ssa.BinOp:
// All no-ops.
case ssa.CallInstruction: // *ssa.Call, *ssa.Go, *ssa.Defer
a.genCall(cgn, instr)
case *ssa.ChangeType:
a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
case *ssa.Convert:
a.genConv(instr)
case *ssa.Extract:
a.copy(a.valueNode(instr),
a.valueOffsetNode(instr.Tuple, instr.Index),
a.sizeof(instr.Type()))
case *ssa.FieldAddr:
a.offsetAddr(a.valueNode(instr), a.valueNode(instr.X),
a.offsetOf(mustDeref(instr.X.Type()), instr.Field))
case *ssa.IndexAddr:
a.offsetAddr(a.valueNode(instr), a.valueNode(instr.X), 1)
case *ssa.Field:
a.copy(a.valueNode(instr),
a.valueOffsetNode(instr.X, instr.Field),
a.sizeof(instr.Type()))
case *ssa.Index:
a.copy(a.valueNode(instr), 1+a.valueNode(instr.X), a.sizeof(instr.Type()))
case *ssa.Select:
recv := a.valueOffsetNode(instr, 2) // instr : (index, recvOk, recv0, ... recv_n-1)
for _, st := range instr.States {
elemSize := a.sizeof(st.Chan.Type().Underlying().(*types.Chan).Elem())
switch st.Dir {
case ast.RECV:
a.load(recv, a.valueNode(st.Chan), elemSize)
recv++
case ast.SEND:
a.store(a.valueNode(st.Chan), a.valueNode(st.Send), elemSize)
}
}
case *ssa.Ret:
results := a.funcResults(cgn.obj)
for _, r := range instr.Results {
sz := a.sizeof(r.Type())
a.copy(results, a.valueNode(r), sz)
results += nodeid(sz)
}
case *ssa.Send:
a.store(a.valueNode(instr.Chan), a.valueNode(instr.X), a.sizeof(instr.X.Type()))
case *ssa.Store:
a.store(a.valueNode(instr.Addr), a.valueNode(instr.Val), a.sizeof(instr.Val.Type()))
case *ssa.Alloc:
obj := a.nextNode()
a.addNodes(mustDeref(instr.Type()), "alloc")
a.endObject(obj, instr)
a.addressOf(a.valueNode(instr), obj)
case *ssa.MakeSlice:
obj := a.nextNode()
a.addNodes(sliceToArray(instr.Type()), "makeslice")
a.endObject(obj, instr)
a.addressOf(a.valueNode(instr), obj)
case *ssa.MakeChan:
obj := a.nextNode()
a.addNodes(instr.Type().Underlying().(*types.Chan).Elem(), "makechan")
a.endObject(obj, instr)
a.addressOf(a.valueNode(instr), obj)
case *ssa.MakeMap:
obj := a.nextNode()
tmap := instr.Type().Underlying().(*types.Map)
a.addNodes(tmap.Key(), "makemap.key")
a.addNodes(tmap.Elem(), "makemap.value")
a.endObject(obj, instr)
a.addressOf(a.valueNode(instr), obj)
case *ssa.MakeInterface:
tConc := instr.X.Type()
// Create nodes and constraints for all methods of the type.
// Ascertaining which will be needed is undecidable in general.
mset := tConc.MethodSet()
for i, n := 0, mset.Len(); i < n; i++ {
a.valueNode(a.prog.Method(mset.At(i)))
}
obj := a.addOneNode(tConc, "iface.conctype", nil) // NB: type may be non-scalar!
vnode := a.addNodes(tConc, "iface.value")
a.endObject(obj, instr)
a.nodes[obj].flags |= ntInterface
// Copy the value into it, if nontrivial.
if x := a.valueNode(instr.X); x != 0 {
a.copy(vnode, x, a.sizeof(tConc))
}
a.addressOf(a.valueNode(instr), obj)
case *ssa.ChangeInterface:
a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
case *ssa.TypeAssert:
dst, src := a.valueNode(instr), a.valueNode(instr.X)
a.addConstraint(&typeAssertConstraint{instr.AssertedType, dst, src})
case *ssa.Slice:
a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)
case *ssa.If, *ssa.Jump:
// no-op.
case *ssa.Phi:
sz := a.sizeof(instr.Type())
for _, e := range instr.Edges {
a.copy(a.valueNode(instr), a.valueNode(e), sz)
}
case *ssa.MakeClosure:
fn := instr.Fn.(*ssa.Function)
a.copy(a.valueNode(instr), a.valueNode(fn), 1)
// Free variables are treated like global variables.
for i, b := range instr.Bindings {
a.copy(a.valueNode(fn.FreeVars[i]), a.valueNode(b), a.sizeof(b.Type()))
}
case *ssa.RunDefers:
// The analysis is flow insensitive, so we just "call"
// defers as we encounter them.
case *ssa.Range:
// Do nothing. Next{Iter: *ssa.Range} handles this case.
case *ssa.Next:
if !instr.IsString { // map
// Assumes that Next is always directly applied to a Range result.
theMap := instr.Iter.(*ssa.Range).X
tMap := theMap.Type().Underlying().(*types.Map)
ksize := a.sizeof(tMap.Key())
vsize := a.sizeof(tMap.Elem())
// Load from the map's (k,v) into the tuple's (ok, k, v).
a.load(a.valueNode(instr)+1, a.valueNode(theMap), ksize+vsize)
}
case *ssa.Lookup:
if tMap, ok := instr.X.Type().Underlying().(*types.Map); ok {
// CommaOk can be ignored: field 0 is a no-op.
ksize := a.sizeof(tMap.Key())
vsize := a.sizeof(tMap.Elem())
a.loadOffset(a.valueNode(instr), a.valueNode(instr.X), ksize, vsize)
}
case *ssa.MapUpdate:
tmap := instr.Map.Type().Underlying().(*types.Map)
ksize := a.sizeof(tmap.Key())
vsize := a.sizeof(tmap.Elem())
m := a.valueNode(instr.Map)
a.store(m, a.valueNode(instr.Key), ksize)
a.storeOffset(m, a.valueNode(instr.Value), ksize, vsize)
case *ssa.Panic:
a.copy(a.panicNode, a.valueNode(instr.X), 1)
default:
panic(fmt.Sprintf("unimplemented: %T", instr))
}
}
// genRootCalls generates the synthetic root of the callgraph and the
// initial calls from it to the analysis scope, such as main, a test
// or a library.
//
func (a *analysis) genRootCalls() *cgnode {
r := ssa.NewFunction("<root>", new(types.Signature), "root of callgraph")
r.Prog = a.prog // hack.
r.Enclosing = r // hack, so Function.String() doesn't crash
r.String() // (asserts that it doesn't crash)
root := &cgnode{fn: r}
// For each main package, call main.init(), main.main().
for _, mainPkg := range a.config.Mains {
main := mainPkg.Func("main")
if main == nil {
panic(fmt.Sprintf("%s has no main function", mainPkg))
}
targets := a.addOneNode(main.Signature, "root.targets", nil)
site := &callsite{
caller: root,
targets: targets,
}
a.callsites = append(a.callsites, site)
for _, fn := range [2]*ssa.Function{mainPkg.Func("init"), main} {
if a.log != nil {
fmt.Fprintf(a.log, "\troot call to %s:\n", fn)
}
a.copy(targets, a.valueNode(fn), 1)
}
}
return root
}
// genFunc generates constraints for function fn.
func (a *analysis) genFunc(cgn *cgnode) {
fn := cgn.fn
if a.log != nil {
fmt.Fprintln(a.log)
fmt.Fprintln(a.log)
cgn.fn.DumpTo(a.log)
}
if impl := a.findIntrinsic(fn); impl != nil {
impl(a, cgn)
return
}
if fn.Blocks == nil {
// External function with no intrinsic treatment.
// We'll warn about calls to such functions at the end.
return
}
// The value nodes for the params are in the func object block.
params := a.funcParams(cgn.obj)
for _, p := range fn.Params {
// TODO(adonovan): record the context (cgn) too.
a.setValueNode(p, params)
params += nodeid(a.sizeof(p.Type()))
}
// Free variables are treated like global variables:
// the outer function sets them with MakeClosure;
// the inner function accesses them with Capture.
// Create value nodes for all value instructions.
// (Clobbers any previous nodes from same fn in different context.)
if a.log != nil {
fmt.Fprintln(a.log, "; Creating instruction values")
}
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
switch instr := instr.(type) {
case *ssa.Range:
// do nothing: it has a funky type.
case ssa.Value:
var comment string
if a.log != nil {
comment = instr.Name()
}
id := a.addNodes(instr.Type(), comment)
// TODO(adonovan): record the context (cgn) too.
a.setValueNode(instr, id)
}
}
}
// Generate constraints for instructions.
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
a.genInstr(cgn, instr)
}
}
// (Instruction Values will hang around in the environment.)
}
// generate generates offline constraints for the entire program.
// It returns the synthetic root of the callgraph.
//
func (a *analysis) generate() *cgnode {
// Create a dummy node since we use the nodeid 0 for
// non-pointerlike variables.
a.addNodes(tInvalid, "(zero)")
// Create the global node for panic values.
a.panicNode = a.addNodes(tEface, "panic")
root := a.genRootCalls()
// Generate constraints for entire program.
// (Actually just the RTA-reachable portion of the program.
// See Bacon & Sweeney, OOPSLA'96).
for len(a.genq) > 0 {
cgn := a.genq[0]
a.genq = a.genq[1:]
a.genFunc(cgn)
}
// Create a dummy node to avoid out-of-range indexing in case
// the last allocated type was of zero length.
a.addNodes(tInvalid, "(max)")
return root
}