1
0
mirror of https://github.com/golang/go synced 2024-11-19 11:04:47 -07:00
go/ssa/interp/testdata/coverage.go

561 lines
9.5 KiB
Go
Raw Normal View History

// This interpreter test is designed to run very quickly yet provide
// some coverage of a broad selection of constructs.
// TODO(adonovan): more.
//
// Validate this file with 'go run' after editing.
// TODO(adonovan): break this into small files organized by theme.
package main
import (
"fmt"
"reflect"
)
const zero int = 1
var v = []int{1 + zero: 42}
// Nonliteral keys in composite literal.
func init() {
if x := fmt.Sprint(v); x != "[0 0 42]" {
panic(x)
}
}
func init() {
// Call of variadic function with (implicit) empty slice.
if x := fmt.Sprint(); x != "" {
panic(x)
}
}
type empty interface{}
type I interface {
f() int
}
type T struct{ z int }
func (t T) f() int { return t.z }
func use(interface{}) {}
var counter = 2
// Test initialization, including init blocks containing 'return'.
// Assertion is in main.
func init() {
counter *= 3
return
counter *= 3
}
func init() {
counter *= 5
return
counter *= 5
}
// Recursion.
func fib(x int) int {
if x < 2 {
return x
}
return fib(x-1) + fib(x-2)
}
func fibgen(ch chan int) {
for x := 0; x < 10; x++ {
ch <- fib(x)
}
close(ch)
}
// Goroutines and channels.
func init() {
ch := make(chan int)
go fibgen(ch)
var fibs []int
for v := range ch {
fibs = append(fibs, v)
if len(fibs) == 10 {
break
}
}
if x := fmt.Sprint(fibs); x != "[0 1 1 2 3 5 8 13 21 34]" {
panic(x)
}
}
// Test of aliasing.
func init() {
type S struct {
a, b string
}
s1 := []string{"foo", "bar"}
s2 := s1 // creates an alias
s2[0] = "wiz"
if x := fmt.Sprint(s1, s2); x != "[wiz bar] [wiz bar]" {
panic(x)
}
pa1 := &[2]string{"foo", "bar"}
pa2 := pa1 // creates an alias
(*pa2)[0] = "wiz" // * required to workaround typechecker bug
if x := fmt.Sprint(*pa1, *pa2); x != "[wiz bar] [wiz bar]" {
panic(x)
}
a1 := [2]string{"foo", "bar"}
a2 := a1 // creates a copy
a2[0] = "wiz"
if x := fmt.Sprint(a1, a2); x != "[foo bar] [wiz bar]" {
panic(x)
}
t1 := S{"foo", "bar"}
t2 := t1 // copy
t2.a = "wiz"
if x := fmt.Sprint(t1, t2); x != "{foo bar} {wiz bar}" {
panic(x)
}
}
// Range over string.
func init() {
if x := len("Hello, 世界"); x != 13 { // bytes
panic(x)
}
var indices []int
var runes []rune
for i, r := range "Hello, 世界" {
runes = append(runes, r)
indices = append(indices, i)
}
if x := fmt.Sprint(runes); x != "[72 101 108 108 111 44 32 19990 30028]" {
panic(x)
}
if x := fmt.Sprint(indices); x != "[0 1 2 3 4 5 6 7 10]" {
panic(x)
}
s := ""
for _, r := range runes {
s = fmt.Sprintf("%s%c", s, r)
}
if s != "Hello, 世界" {
panic(s)
}
}
func main() {
print() // legal
if counter != 2*3*5 {
panic(counter)
}
// Test builtins (e.g. complex) preserve named argument types.
type N complex128
var n N
n = complex(1.0, 2.0)
if n != complex(1.0, 2.0) {
panic(n)
}
if x := reflect.TypeOf(n).String(); x != "main.N" {
panic(x)
}
if real(n) != 1.0 || imag(n) != 2.0 {
panic(n)
}
// Channel + select.
ch := make(chan int, 1)
select {
case ch <- 1:
// ok
default:
panic("couldn't send")
}
if <-ch != 1 {
panic("couldn't receive")
}
// A "receive" select-case that doesn't declare its vars. (regression test)
anint := 0
ok := false
select {
case anint, ok = <-ch:
case anint = <-ch:
default:
}
_ = anint
_ = ok
// Anon structs with methods.
anon := struct{ T }{T: T{z: 1}}
if x := anon.f(); x != 1 {
panic(x)
}
var i I = anon
if x := i.f(); x != 1 {
panic(x)
}
// NB. precise output of reflect.Type.String is undefined.
if x := reflect.TypeOf(i).String(); x != "struct { main.T }" && x != "struct{main.T}" {
panic(x)
}
// fmt.
const message = "Hello, World!"
if fmt.Sprintf("%s, %s!", "Hello", "World") != message {
panic("oops")
}
// Type assertion.
type S struct {
f int
}
var e empty = S{f: 42}
switch v := e.(type) {
case S:
if v.f != 42 {
panic(v.f)
}
default:
panic(reflect.TypeOf(v))
}
if i, ok := e.(I); ok {
panic(i)
}
// Switch.
var x int
switch x {
case 1:
panic(x)
fallthrough
case 2, 3:
panic(x)
default:
// ok
}
// empty switch
switch {
}
// empty switch
switch {
default:
}
// empty switch
switch {
default:
fallthrough
case false:
}
// string -> []rune conversion.
use([]rune("foo"))
// Calls of form x.f().
type S2 struct {
f func() int
}
S2{f: func() int { return 1 }}.f() // field is a func value
T{}.f() // method call
i.f() // interface method invocation
(interface {
f() int
}(T{})).f() // anon interface method invocation
// Map lookup.
if v, ok := map[string]string{}["foo5"]; v != "" || ok {
panic("oops")
}
// Regression test: implicit address-taken struct literal
// inside literal map element.
_ = map[int]*struct{}{0: {}}
}
// Parens should not prevent intrinsic treatment of built-ins.
// (Regression test for a crash.)
func init() {
_ = (new)(int)
_ = (make)([]int, 0)
}
type mybool bool
func (mybool) f() {}
func init() {
type mybool bool
var b mybool
var i interface{} = b || b // result preserves types of operands
_ = i.(mybool)
i = false && b // result preserves type of "typed" operand
_ = i.(mybool)
i = b || true // result preserves type of "typed" operand
_ = i.(mybool)
}
func init() {
var x, y int
var b mybool = x == y // x==y is an untyped bool
b.f()
}
// Simple closures.
func init() {
b := 3
f := func(a int) int {
return a + b
}
b++
if x := f(1); x != 5 { // 1+4 == 5
panic(x)
}
b++
if x := f(2); x != 7 { // 2+5 == 7
panic(x)
}
if b := f(1) < 16 || f(2) < 17; !b {
panic("oops")
}
}
var order []int
func create(x int) int {
order = append(order, x)
return x
}
var c = create(b + 1)
var a, b = create(1), create(2)
// Initialization order of package-level value specs.
func init() {
if x := fmt.Sprint(order); x != "[2 3 1]" {
panic(x)
}
if c != 3 {
panic(c)
}
}
// Shifts.
func init() {
var i int64 = 1
var u uint64 = 1 << 32
if x := i << uint32(u); x != 1 {
panic(x)
}
if x := i << uint64(u); x != 0 {
panic(x)
}
}
// Implicit conversion of delete() key operand.
func init() {
type I interface{}
m := make(map[I]bool)
m[1] = true
m[I(2)] = true
if len(m) != 2 {
panic(m)
}
delete(m, I(1))
delete(m, 2)
if len(m) != 0 {
panic(m)
}
}
// An I->I conversion always succeeds.
func init() {
var x I
if I(x) != I(nil) {
panic("I->I conversion failed")
}
}
// An I->I type-assert fails iff the value is nil.
func init() {
go.tools/ssa: implement correct control flow for recovered panic. A function such as this: func one() (x int) { defer func() { recover() }() x = 1 panic("return") } that combines named return parameters (NRPs) with deferred calls that call recover, may return non-zero values despite the fact it doesn't even contain a return statement. (!) This requires a change to the SSA API: all functions' control-flow graphs now have a second entry point, called Recover, which is the block at which control flow resumes after a recovered panic. The Recover block simply loads the NRPs and returns them. As an optimization, most functions don't need a Recover block, so it is omitted. In fact it is only needed for functions that have NRPs and defer a call to another function that _may_ call recover. Dataflow analysis of SSA now requires extra work, since every may-panic instruction has an implicit control-flow edge to the Recover block. The only dataflow analysis so far implemented is SSA renaming, for which we make the following simplifying assumption: the Recover block only loads the NRPs and returns. This means we don't really need to analyze it, we can just skip the "lifting" of such NRPs. We also special-case the Recover block in the dominance computation. Rejected alternative approaches: - Specifying a Recover block for every defer instruction (like a traditional exception handler). This seemed like excessive generality, since Go programs only need the same degenerate form of Recover block. - Adding an instruction to set the Recover block immediately after the named return values are set up, so that dominance can be computed without special-casing. This didn't seem worth the effort. Interpreter: - This CL completely reimplements the panic/recover/ defer logic in the interpreter. It's clearer and simpler and closer to the model in the spec. - Some runtime panic messages have been changed to be closer to gc's, since tests depend on it. - The interpreter now requires that the runtime.runtimeError type be part of the SSA program. This requires that clients import this package prior to invoking the interpreter. This in turn requires (Importer).ImportPackage(path string), which this CL adds. - All $GOROOT/test/recover{,1,2,3}.go tests are now passing. NB, the bug described in coverage.go (defer/recover in a concatenated init function) remains. Will be fixed in a follow-up. Fixes golang/go#6381 R=gri CC=crawshaw, golang-dev https://golang.org/cl/13844043
2013-10-14 13:38:56 -06:00
// TODO(adonovan): temporarily disabled; see comment at bottom of file.
// defer func() {
// r := fmt.Sprint(recover())
// if r != "interface conversion: interface is nil, not main.I" {
// panic("I->I type assertion succeeed for nil value")
// }
// }()
// var x I
// _ = x.(I)
}
//////////////////////////////////////////////////////////////////////
// Variadic bridge methods and interface thunks.
type VT int
var vcount = 0
func (VT) f(x int, y ...string) {
vcount++
if x != 1 {
panic(x)
}
if len(y) != 2 || y[0] != "foo" || y[1] != "bar" {
panic(y)
}
}
type VS struct {
VT
}
type VI interface {
f(x int, y ...string)
}
func init() {
foobar := []string{"foo", "bar"}
var s VS
s.f(1, "foo", "bar")
s.f(1, foobar...)
if vcount != 2 {
panic("s.f not called twice")
}
fn := VI.f
fn(s, 1, "foo", "bar")
fn(s, 1, foobar...)
if vcount != 4 {
panic("I.f not called twice")
}
}
// Multiple labels on same statement.
func multipleLabels() {
var trace []int
i := 0
one:
two:
for ; i < 3; i++ {
trace = append(trace, i)
switch i {
case 0:
continue two
case 1:
i++
goto one
case 2:
break two
}
}
if x := fmt.Sprint(trace); x != "[0 1 2]" {
panic(x)
}
}
func init() {
multipleLabels()
}
////////////////////////////////////////////////////////////////////////
// Defer
func deferMutatesResults(noArgReturn bool) (a, b int) {
defer func() {
if a != 1 || b != 2 {
panic(fmt.Sprint(a, b))
}
a, b = 3, 4
}()
if noArgReturn {
a, b = 1, 2
return
}
return 1, 2
}
func init() {
a, b := deferMutatesResults(true)
if a != 3 || b != 4 {
panic(fmt.Sprint(a, b))
}
a, b = deferMutatesResults(false)
if a != 3 || b != 4 {
panic(fmt.Sprint(a, b))
}
}
// We concatenate init blocks to make a single function, but we must
// run defers at the end of each block, not the combined function.
var deferCount = 0
func init() {
deferCount = 1
defer func() {
deferCount++
}()
// defer runs HERE
}
func init() {
// Strictly speaking the spec says deferCount may be 0 or 2
// since the relative order of init blocks is unspecified.
if deferCount != 2 {
panic(deferCount) // defer call has not run!
}
}
func init() {
// Struct equivalence ignores blank fields.
type s struct{ x, _, z int }
s1 := s{x: 1, z: 3}
s2 := s{x: 1, z: 3}
if s1 != s2 {
panic("not equal")
}
}
func init() {
// A slice var can be compared to const []T nil.
var i interface{} = []string{"foo"}
var j interface{} = []string(nil)
if i.([]string) == nil {
panic("expected i non-nil")
}
if j.([]string) != nil {
panic("expected j nil")
}
// But two slices cannot be compared, even if one is nil.
defer func() {
r := fmt.Sprint(recover())
if r != "runtime error: comparing uncomparable type []string" {
panic("want panic from slice comparison, got " + r)
}
}()
_ = i == j // interface comparison recurses on types
}
// Composite literals
func init() {
type M map[int]int
m1 := []*M{{1: 1}, &M{2: 2}}
want := "map[1:1] map[2:2]"
if got := fmt.Sprint(*m1[0], *m1[1]); got != want {
panic(got)
}
m2 := []M{{1: 1}, M{2: 2}}
if got := fmt.Sprint(m2[0], m2[1]); got != want {
panic(got)
}
}