1
0
mirror of https://github.com/golang/go synced 2024-11-17 22:34:47 -07:00
go/test/writebarrier.go

147 lines
2.6 KiB
Go
Raw Normal View History

// errorcheck -0 -l -d=wb
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test where write barriers are and are not emitted.
package p
import "unsafe"
func f(x **byte, y *byte) {
*x = y // ERROR "write barrier"
z := y // no barrier
*x = z // ERROR "write barrier"
}
func f1(x *[]byte, y []byte) {
*x = y // ERROR "write barrier"
z := y // no barrier
*x = z // ERROR "write barrier"
}
func f1a(x *[]byte, y *[]byte) {
*x = *y // ERROR "write barrier"
z := *y // no barrier
cmd/internal/gc: optimize append + write barrier The code generated for x = append(x, v) is roughly: t := x if len(t)+1 > cap(t) { t = grow(t) } t[len(t)] = v len(t)++ x = t We used to generate this code as Go pseudocode during walk. Generate it instead as actual instructions during gen. Doing so lets us apply a few optimizations. The most important is that when, as in the above example, the source slice and the destination slice are the same, the code can instead do: t := x if len(t)+1 > cap(t) { t = grow(t) x = {base(t), len(t)+1, cap(t)} } else { len(x)++ } t[len(t)] = v That is, in the fast path that does not reallocate the array, only the updated length needs to be written back to x, not the array pointer and not the capacity. This is more like what you'd write by hand in C. It's faster in general, since the fast path elides two of the three stores, but it's especially faster when the form of x is such that the base pointer write would turn into a write barrier. No write, no barrier. name old mean new mean delta BinaryTree17 5.68s × (0.97,1.04) 5.81s × (0.98,1.03) +2.35% (p=0.023) Fannkuch11 4.41s × (0.98,1.03) 4.35s × (1.00,1.00) ~ (p=0.090) FmtFprintfEmpty 92.7ns × (0.91,1.16) 86.0ns × (0.94,1.11) -7.31% (p=0.038) FmtFprintfString 281ns × (0.96,1.08) 276ns × (0.98,1.04) ~ (p=0.219) FmtFprintfInt 288ns × (0.97,1.06) 274ns × (0.98,1.06) -4.94% (p=0.002) FmtFprintfIntInt 493ns × (0.97,1.04) 506ns × (0.99,1.01) +2.65% (p=0.009) FmtFprintfPrefixedInt 423ns × (0.97,1.04) 391ns × (0.99,1.01) -7.52% (p=0.000) FmtFprintfFloat 598ns × (0.99,1.01) 566ns × (0.99,1.01) -5.27% (p=0.000) FmtManyArgs 1.89µs × (0.98,1.05) 1.91µs × (0.99,1.01) ~ (p=0.231) GobDecode 14.8ms × (0.98,1.03) 15.3ms × (0.99,1.02) +3.01% (p=0.000) GobEncode 12.3ms × (0.98,1.01) 11.5ms × (0.97,1.03) -5.93% (p=0.000) Gzip 656ms × (0.99,1.05) 645ms × (0.99,1.01) ~ (p=0.055) Gunzip 142ms × (1.00,1.00) 142ms × (1.00,1.00) -0.32% (p=0.034) HTTPClientServer 91.2µs × (0.97,1.04) 90.5µs × (0.97,1.04) ~ (p=0.468) JSONEncode 32.6ms × (0.97,1.08) 32.0ms × (0.98,1.03) ~ (p=0.190) JSONDecode 114ms × (0.97,1.05) 114ms × (0.99,1.01) ~ (p=0.887) Mandelbrot200 6.11ms × (0.98,1.04) 6.04ms × (1.00,1.01) ~ (p=0.167) GoParse 6.66ms × (0.97,1.04) 6.47ms × (0.97,1.05) -2.81% (p=0.014) RegexpMatchEasy0_32 159ns × (0.99,1.00) 171ns × (0.93,1.07) +7.19% (p=0.002) RegexpMatchEasy0_1K 538ns × (1.00,1.01) 550ns × (0.98,1.01) +2.30% (p=0.000) RegexpMatchEasy1_32 138ns × (1.00,1.00) 135ns × (0.99,1.02) -1.60% (p=0.000) RegexpMatchEasy1_1K 869ns × (0.99,1.01) 879ns × (1.00,1.01) +1.08% (p=0.000) RegexpMatchMedium_32 252ns × (0.99,1.01) 243ns × (1.00,1.00) -3.71% (p=0.000) RegexpMatchMedium_1K 72.7µs × (1.00,1.00) 70.3µs × (1.00,1.00) -3.34% (p=0.000) RegexpMatchHard_32 3.85µs × (1.00,1.00) 3.82µs × (1.00,1.01) -0.81% (p=0.000) RegexpMatchHard_1K 118µs × (1.00,1.00) 117µs × (1.00,1.00) -0.56% (p=0.000) Revcomp 920ms × (0.97,1.07) 917ms × (0.97,1.04) ~ (p=0.808) Template 129ms × (0.98,1.03) 114ms × (0.99,1.01) -12.06% (p=0.000) TimeParse 619ns × (0.99,1.01) 622ns × (0.99,1.01) ~ (p=0.062) TimeFormat 661ns × (0.98,1.04) 665ns × (0.99,1.01) ~ (p=0.524) See next CL for combination with a similar optimization for slice. The benchmarks that are slower in this CL are still faster overall with the combination of the two. Change-Id: I2a7421658091b2488c64741b4db15ab6c3b4cb7e Reviewed-on: https://go-review.googlesource.com/9812 Reviewed-by: David Chase <drchase@google.com>
2015-05-06 10:34:30 -06:00
*x = z // ERROR "write barrier"
}
func f2(x *interface{}, y interface{}) {
*x = y // ERROR "write barrier"
z := y // no barrier
*x = z // ERROR "write barrier"
}
func f2a(x *interface{}, y *interface{}) {
*x = *y // ERROR "write barrier"
z := y // no barrier
*x = z // ERROR "write barrier"
}
func f3(x *string, y string) {
*x = y // ERROR "write barrier"
z := y // no barrier
*x = z // ERROR "write barrier"
}
func f3a(x *string, y *string) {
*x = *y // ERROR "write barrier"
z := *y // no barrier
cmd/internal/gc: optimize append + write barrier The code generated for x = append(x, v) is roughly: t := x if len(t)+1 > cap(t) { t = grow(t) } t[len(t)] = v len(t)++ x = t We used to generate this code as Go pseudocode during walk. Generate it instead as actual instructions during gen. Doing so lets us apply a few optimizations. The most important is that when, as in the above example, the source slice and the destination slice are the same, the code can instead do: t := x if len(t)+1 > cap(t) { t = grow(t) x = {base(t), len(t)+1, cap(t)} } else { len(x)++ } t[len(t)] = v That is, in the fast path that does not reallocate the array, only the updated length needs to be written back to x, not the array pointer and not the capacity. This is more like what you'd write by hand in C. It's faster in general, since the fast path elides two of the three stores, but it's especially faster when the form of x is such that the base pointer write would turn into a write barrier. No write, no barrier. name old mean new mean delta BinaryTree17 5.68s × (0.97,1.04) 5.81s × (0.98,1.03) +2.35% (p=0.023) Fannkuch11 4.41s × (0.98,1.03) 4.35s × (1.00,1.00) ~ (p=0.090) FmtFprintfEmpty 92.7ns × (0.91,1.16) 86.0ns × (0.94,1.11) -7.31% (p=0.038) FmtFprintfString 281ns × (0.96,1.08) 276ns × (0.98,1.04) ~ (p=0.219) FmtFprintfInt 288ns × (0.97,1.06) 274ns × (0.98,1.06) -4.94% (p=0.002) FmtFprintfIntInt 493ns × (0.97,1.04) 506ns × (0.99,1.01) +2.65% (p=0.009) FmtFprintfPrefixedInt 423ns × (0.97,1.04) 391ns × (0.99,1.01) -7.52% (p=0.000) FmtFprintfFloat 598ns × (0.99,1.01) 566ns × (0.99,1.01) -5.27% (p=0.000) FmtManyArgs 1.89µs × (0.98,1.05) 1.91µs × (0.99,1.01) ~ (p=0.231) GobDecode 14.8ms × (0.98,1.03) 15.3ms × (0.99,1.02) +3.01% (p=0.000) GobEncode 12.3ms × (0.98,1.01) 11.5ms × (0.97,1.03) -5.93% (p=0.000) Gzip 656ms × (0.99,1.05) 645ms × (0.99,1.01) ~ (p=0.055) Gunzip 142ms × (1.00,1.00) 142ms × (1.00,1.00) -0.32% (p=0.034) HTTPClientServer 91.2µs × (0.97,1.04) 90.5µs × (0.97,1.04) ~ (p=0.468) JSONEncode 32.6ms × (0.97,1.08) 32.0ms × (0.98,1.03) ~ (p=0.190) JSONDecode 114ms × (0.97,1.05) 114ms × (0.99,1.01) ~ (p=0.887) Mandelbrot200 6.11ms × (0.98,1.04) 6.04ms × (1.00,1.01) ~ (p=0.167) GoParse 6.66ms × (0.97,1.04) 6.47ms × (0.97,1.05) -2.81% (p=0.014) RegexpMatchEasy0_32 159ns × (0.99,1.00) 171ns × (0.93,1.07) +7.19% (p=0.002) RegexpMatchEasy0_1K 538ns × (1.00,1.01) 550ns × (0.98,1.01) +2.30% (p=0.000) RegexpMatchEasy1_32 138ns × (1.00,1.00) 135ns × (0.99,1.02) -1.60% (p=0.000) RegexpMatchEasy1_1K 869ns × (0.99,1.01) 879ns × (1.00,1.01) +1.08% (p=0.000) RegexpMatchMedium_32 252ns × (0.99,1.01) 243ns × (1.00,1.00) -3.71% (p=0.000) RegexpMatchMedium_1K 72.7µs × (1.00,1.00) 70.3µs × (1.00,1.00) -3.34% (p=0.000) RegexpMatchHard_32 3.85µs × (1.00,1.00) 3.82µs × (1.00,1.01) -0.81% (p=0.000) RegexpMatchHard_1K 118µs × (1.00,1.00) 117µs × (1.00,1.00) -0.56% (p=0.000) Revcomp 920ms × (0.97,1.07) 917ms × (0.97,1.04) ~ (p=0.808) Template 129ms × (0.98,1.03) 114ms × (0.99,1.01) -12.06% (p=0.000) TimeParse 619ns × (0.99,1.01) 622ns × (0.99,1.01) ~ (p=0.062) TimeFormat 661ns × (0.98,1.04) 665ns × (0.99,1.01) ~ (p=0.524) See next CL for combination with a similar optimization for slice. The benchmarks that are slower in this CL are still faster overall with the combination of the two. Change-Id: I2a7421658091b2488c64741b4db15ab6c3b4cb7e Reviewed-on: https://go-review.googlesource.com/9812 Reviewed-by: David Chase <drchase@google.com>
2015-05-06 10:34:30 -06:00
*x = z // ERROR "write barrier"
}
func f4(x *[2]string, y [2]string) {
*x = y // ERROR "write barrier"
z := y // no barrier
*x = z // ERROR "write barrier"
}
func f4a(x *[2]string, y *[2]string) {
*x = *y // ERROR "write barrier"
z := *y // no barrier
cmd/internal/gc: optimize append + write barrier The code generated for x = append(x, v) is roughly: t := x if len(t)+1 > cap(t) { t = grow(t) } t[len(t)] = v len(t)++ x = t We used to generate this code as Go pseudocode during walk. Generate it instead as actual instructions during gen. Doing so lets us apply a few optimizations. The most important is that when, as in the above example, the source slice and the destination slice are the same, the code can instead do: t := x if len(t)+1 > cap(t) { t = grow(t) x = {base(t), len(t)+1, cap(t)} } else { len(x)++ } t[len(t)] = v That is, in the fast path that does not reallocate the array, only the updated length needs to be written back to x, not the array pointer and not the capacity. This is more like what you'd write by hand in C. It's faster in general, since the fast path elides two of the three stores, but it's especially faster when the form of x is such that the base pointer write would turn into a write barrier. No write, no barrier. name old mean new mean delta BinaryTree17 5.68s × (0.97,1.04) 5.81s × (0.98,1.03) +2.35% (p=0.023) Fannkuch11 4.41s × (0.98,1.03) 4.35s × (1.00,1.00) ~ (p=0.090) FmtFprintfEmpty 92.7ns × (0.91,1.16) 86.0ns × (0.94,1.11) -7.31% (p=0.038) FmtFprintfString 281ns × (0.96,1.08) 276ns × (0.98,1.04) ~ (p=0.219) FmtFprintfInt 288ns × (0.97,1.06) 274ns × (0.98,1.06) -4.94% (p=0.002) FmtFprintfIntInt 493ns × (0.97,1.04) 506ns × (0.99,1.01) +2.65% (p=0.009) FmtFprintfPrefixedInt 423ns × (0.97,1.04) 391ns × (0.99,1.01) -7.52% (p=0.000) FmtFprintfFloat 598ns × (0.99,1.01) 566ns × (0.99,1.01) -5.27% (p=0.000) FmtManyArgs 1.89µs × (0.98,1.05) 1.91µs × (0.99,1.01) ~ (p=0.231) GobDecode 14.8ms × (0.98,1.03) 15.3ms × (0.99,1.02) +3.01% (p=0.000) GobEncode 12.3ms × (0.98,1.01) 11.5ms × (0.97,1.03) -5.93% (p=0.000) Gzip 656ms × (0.99,1.05) 645ms × (0.99,1.01) ~ (p=0.055) Gunzip 142ms × (1.00,1.00) 142ms × (1.00,1.00) -0.32% (p=0.034) HTTPClientServer 91.2µs × (0.97,1.04) 90.5µs × (0.97,1.04) ~ (p=0.468) JSONEncode 32.6ms × (0.97,1.08) 32.0ms × (0.98,1.03) ~ (p=0.190) JSONDecode 114ms × (0.97,1.05) 114ms × (0.99,1.01) ~ (p=0.887) Mandelbrot200 6.11ms × (0.98,1.04) 6.04ms × (1.00,1.01) ~ (p=0.167) GoParse 6.66ms × (0.97,1.04) 6.47ms × (0.97,1.05) -2.81% (p=0.014) RegexpMatchEasy0_32 159ns × (0.99,1.00) 171ns × (0.93,1.07) +7.19% (p=0.002) RegexpMatchEasy0_1K 538ns × (1.00,1.01) 550ns × (0.98,1.01) +2.30% (p=0.000) RegexpMatchEasy1_32 138ns × (1.00,1.00) 135ns × (0.99,1.02) -1.60% (p=0.000) RegexpMatchEasy1_1K 869ns × (0.99,1.01) 879ns × (1.00,1.01) +1.08% (p=0.000) RegexpMatchMedium_32 252ns × (0.99,1.01) 243ns × (1.00,1.00) -3.71% (p=0.000) RegexpMatchMedium_1K 72.7µs × (1.00,1.00) 70.3µs × (1.00,1.00) -3.34% (p=0.000) RegexpMatchHard_32 3.85µs × (1.00,1.00) 3.82µs × (1.00,1.01) -0.81% (p=0.000) RegexpMatchHard_1K 118µs × (1.00,1.00) 117µs × (1.00,1.00) -0.56% (p=0.000) Revcomp 920ms × (0.97,1.07) 917ms × (0.97,1.04) ~ (p=0.808) Template 129ms × (0.98,1.03) 114ms × (0.99,1.01) -12.06% (p=0.000) TimeParse 619ns × (0.99,1.01) 622ns × (0.99,1.01) ~ (p=0.062) TimeFormat 661ns × (0.98,1.04) 665ns × (0.99,1.01) ~ (p=0.524) See next CL for combination with a similar optimization for slice. The benchmarks that are slower in this CL are still faster overall with the combination of the two. Change-Id: I2a7421658091b2488c64741b4db15ab6c3b4cb7e Reviewed-on: https://go-review.googlesource.com/9812 Reviewed-by: David Chase <drchase@google.com>
2015-05-06 10:34:30 -06:00
*x = z // ERROR "write barrier"
}
type T struct {
X *int
Y int
M map[int]int
}
func f5(t, u *T) {
t.X = &u.Y // ERROR "write barrier"
}
func f6(t *T) {
t.M = map[int]int{1: 2} // ERROR "write barrier"
}
func f7(x, y *int) []*int {
var z [3]*int
i := 0
z[i] = x // ERROR "write barrier"
i++
z[i] = y // ERROR "write barrier"
i++
return z[:i]
}
func f9(x *interface{}, v *byte) {
*x = v // ERROR "write barrier"
}
func f10(x *byte, f func(interface{})) {
f(x)
}
func f11(x *unsafe.Pointer, y unsafe.Pointer) {
*x = unsafe.Pointer(uintptr(y) + 1) // ERROR "write barrier"
}
cmd/internal/gc: optimize append + write barrier The code generated for x = append(x, v) is roughly: t := x if len(t)+1 > cap(t) { t = grow(t) } t[len(t)] = v len(t)++ x = t We used to generate this code as Go pseudocode during walk. Generate it instead as actual instructions during gen. Doing so lets us apply a few optimizations. The most important is that when, as in the above example, the source slice and the destination slice are the same, the code can instead do: t := x if len(t)+1 > cap(t) { t = grow(t) x = {base(t), len(t)+1, cap(t)} } else { len(x)++ } t[len(t)] = v That is, in the fast path that does not reallocate the array, only the updated length needs to be written back to x, not the array pointer and not the capacity. This is more like what you'd write by hand in C. It's faster in general, since the fast path elides two of the three stores, but it's especially faster when the form of x is such that the base pointer write would turn into a write barrier. No write, no barrier. name old mean new mean delta BinaryTree17 5.68s × (0.97,1.04) 5.81s × (0.98,1.03) +2.35% (p=0.023) Fannkuch11 4.41s × (0.98,1.03) 4.35s × (1.00,1.00) ~ (p=0.090) FmtFprintfEmpty 92.7ns × (0.91,1.16) 86.0ns × (0.94,1.11) -7.31% (p=0.038) FmtFprintfString 281ns × (0.96,1.08) 276ns × (0.98,1.04) ~ (p=0.219) FmtFprintfInt 288ns × (0.97,1.06) 274ns × (0.98,1.06) -4.94% (p=0.002) FmtFprintfIntInt 493ns × (0.97,1.04) 506ns × (0.99,1.01) +2.65% (p=0.009) FmtFprintfPrefixedInt 423ns × (0.97,1.04) 391ns × (0.99,1.01) -7.52% (p=0.000) FmtFprintfFloat 598ns × (0.99,1.01) 566ns × (0.99,1.01) -5.27% (p=0.000) FmtManyArgs 1.89µs × (0.98,1.05) 1.91µs × (0.99,1.01) ~ (p=0.231) GobDecode 14.8ms × (0.98,1.03) 15.3ms × (0.99,1.02) +3.01% (p=0.000) GobEncode 12.3ms × (0.98,1.01) 11.5ms × (0.97,1.03) -5.93% (p=0.000) Gzip 656ms × (0.99,1.05) 645ms × (0.99,1.01) ~ (p=0.055) Gunzip 142ms × (1.00,1.00) 142ms × (1.00,1.00) -0.32% (p=0.034) HTTPClientServer 91.2µs × (0.97,1.04) 90.5µs × (0.97,1.04) ~ (p=0.468) JSONEncode 32.6ms × (0.97,1.08) 32.0ms × (0.98,1.03) ~ (p=0.190) JSONDecode 114ms × (0.97,1.05) 114ms × (0.99,1.01) ~ (p=0.887) Mandelbrot200 6.11ms × (0.98,1.04) 6.04ms × (1.00,1.01) ~ (p=0.167) GoParse 6.66ms × (0.97,1.04) 6.47ms × (0.97,1.05) -2.81% (p=0.014) RegexpMatchEasy0_32 159ns × (0.99,1.00) 171ns × (0.93,1.07) +7.19% (p=0.002) RegexpMatchEasy0_1K 538ns × (1.00,1.01) 550ns × (0.98,1.01) +2.30% (p=0.000) RegexpMatchEasy1_32 138ns × (1.00,1.00) 135ns × (0.99,1.02) -1.60% (p=0.000) RegexpMatchEasy1_1K 869ns × (0.99,1.01) 879ns × (1.00,1.01) +1.08% (p=0.000) RegexpMatchMedium_32 252ns × (0.99,1.01) 243ns × (1.00,1.00) -3.71% (p=0.000) RegexpMatchMedium_1K 72.7µs × (1.00,1.00) 70.3µs × (1.00,1.00) -3.34% (p=0.000) RegexpMatchHard_32 3.85µs × (1.00,1.00) 3.82µs × (1.00,1.01) -0.81% (p=0.000) RegexpMatchHard_1K 118µs × (1.00,1.00) 117µs × (1.00,1.00) -0.56% (p=0.000) Revcomp 920ms × (0.97,1.07) 917ms × (0.97,1.04) ~ (p=0.808) Template 129ms × (0.98,1.03) 114ms × (0.99,1.01) -12.06% (p=0.000) TimeParse 619ns × (0.99,1.01) 622ns × (0.99,1.01) ~ (p=0.062) TimeFormat 661ns × (0.98,1.04) 665ns × (0.99,1.01) ~ (p=0.524) See next CL for combination with a similar optimization for slice. The benchmarks that are slower in this CL are still faster overall with the combination of the two. Change-Id: I2a7421658091b2488c64741b4db15ab6c3b4cb7e Reviewed-on: https://go-review.googlesource.com/9812 Reviewed-by: David Chase <drchase@google.com>
2015-05-06 10:34:30 -06:00
func f12(x []*int, y *int) []*int {
// write barrier for storing y in x's underlying array
x = append(x, y) // ERROR "write barrier"
return x
}
func f12a(x []int, y int) []int {
// y not a pointer, so no write barriers in this function
x = append(x, y)
return x
}
func f13(x []int, y *[]int) {
*y = append(x, 1) // ERROR "write barrier"
}
func f14(y *[]int) {
*y = append(*y, 1) // ERROR "write barrier"
}
type T1 struct {
X *int
}
func f15(x []T1, y T1) []T1 {
return append(x, y) // ERROR "write barrier"
}
type T8 struct {
X [8]*int
}
func f16(x []T8, y T8) []T8 {
return append(x, y) // ERROR "write barrier"
}