2014-11-11 15:05:02 -07:00
|
|
|
// Copyright 2014 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
// Implementation of runtime/debug.WriteHeapDump. Writes all
|
|
|
|
// objects in the heap plus additional info (roots, threads,
|
|
|
|
// finalizers, etc.) to a file.
|
|
|
|
|
|
|
|
// The format of the dumped file is described at
|
2014-11-20 09:48:08 -07:00
|
|
|
// http://golang.org/s/go14heapdump.
|
2014-11-11 15:05:02 -07:00
|
|
|
|
|
|
|
package runtime
|
|
|
|
|
|
|
|
import "unsafe"
|
|
|
|
|
2015-02-19 11:38:46 -07:00
|
|
|
//go:linkname runtime_debug_WriteHeapDump runtime/debug.WriteHeapDump
|
|
|
|
func runtime_debug_WriteHeapDump(fd uintptr) {
|
|
|
|
semacquire(&worldsema, false)
|
|
|
|
gp := getg()
|
|
|
|
gp.m.preemptoff = "write heap dump"
|
|
|
|
systemstack(stoptheworld)
|
|
|
|
|
|
|
|
systemstack(func() {
|
|
|
|
writeheapdump_m(fd)
|
|
|
|
})
|
|
|
|
|
|
|
|
gp.m.preemptoff = ""
|
|
|
|
gp.m.locks++
|
|
|
|
semrelease(&worldsema)
|
|
|
|
systemstack(starttheworld)
|
|
|
|
gp.m.locks--
|
|
|
|
}
|
|
|
|
|
2014-11-11 15:05:02 -07:00
|
|
|
const (
|
|
|
|
fieldKindEol = 0
|
|
|
|
fieldKindPtr = 1
|
|
|
|
fieldKindIface = 2
|
|
|
|
fieldKindEface = 3
|
|
|
|
tagEOF = 0
|
|
|
|
tagObject = 1
|
|
|
|
tagOtherRoot = 2
|
|
|
|
tagType = 3
|
|
|
|
tagGoroutine = 4
|
|
|
|
tagStackFrame = 5
|
|
|
|
tagParams = 6
|
|
|
|
tagFinalizer = 7
|
|
|
|
tagItab = 8
|
|
|
|
tagOSThread = 9
|
|
|
|
tagMemStats = 10
|
|
|
|
tagQueuedFinalizer = 11
|
|
|
|
tagData = 12
|
|
|
|
tagBSS = 13
|
|
|
|
tagDefer = 14
|
|
|
|
tagPanic = 15
|
|
|
|
tagMemProf = 16
|
|
|
|
tagAllocSample = 17
|
|
|
|
)
|
|
|
|
|
|
|
|
var dumpfd uintptr // fd to write the dump to.
|
|
|
|
var tmpbuf []byte
|
|
|
|
|
|
|
|
// buffer of pending write data
|
|
|
|
const (
|
|
|
|
bufSize = 4096
|
|
|
|
)
|
|
|
|
|
|
|
|
var buf [bufSize]byte
|
|
|
|
var nbuf uintptr
|
|
|
|
|
|
|
|
func dwrite(data unsafe.Pointer, len uintptr) {
|
|
|
|
if len == 0 {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if nbuf+len <= bufSize {
|
|
|
|
copy(buf[nbuf:], (*[bufSize]byte)(data)[:len])
|
|
|
|
nbuf += len
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
write(dumpfd, (unsafe.Pointer)(&buf), int32(nbuf))
|
|
|
|
if len >= bufSize {
|
|
|
|
write(dumpfd, data, int32(len))
|
|
|
|
nbuf = 0
|
|
|
|
} else {
|
|
|
|
copy(buf[:], (*[bufSize]byte)(data)[:len])
|
|
|
|
nbuf = len
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func dwritebyte(b byte) {
|
|
|
|
dwrite(unsafe.Pointer(&b), 1)
|
|
|
|
}
|
|
|
|
|
|
|
|
func flush() {
|
|
|
|
write(dumpfd, (unsafe.Pointer)(&buf), int32(nbuf))
|
|
|
|
nbuf = 0
|
|
|
|
}
|
|
|
|
|
|
|
|
// Cache of types that have been serialized already.
|
|
|
|
// We use a type's hash field to pick a bucket.
|
|
|
|
// Inside a bucket, we keep a list of types that
|
|
|
|
// have been serialized so far, most recently used first.
|
|
|
|
// Note: when a bucket overflows we may end up
|
|
|
|
// serializing a type more than once. That's ok.
|
|
|
|
const (
|
|
|
|
typeCacheBuckets = 256
|
|
|
|
typeCacheAssoc = 4
|
|
|
|
)
|
|
|
|
|
|
|
|
type typeCacheBucket struct {
|
|
|
|
t [typeCacheAssoc]*_type
|
|
|
|
}
|
|
|
|
|
|
|
|
var typecache [typeCacheBuckets]typeCacheBucket
|
|
|
|
|
|
|
|
// dump a uint64 in a varint format parseable by encoding/binary
|
|
|
|
func dumpint(v uint64) {
|
|
|
|
var buf [10]byte
|
|
|
|
var n int
|
|
|
|
for v >= 0x80 {
|
|
|
|
buf[n] = byte(v | 0x80)
|
|
|
|
n++
|
|
|
|
v >>= 7
|
|
|
|
}
|
|
|
|
buf[n] = byte(v)
|
|
|
|
n++
|
|
|
|
dwrite(unsafe.Pointer(&buf), uintptr(n))
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpbool(b bool) {
|
|
|
|
if b {
|
|
|
|
dumpint(1)
|
|
|
|
} else {
|
|
|
|
dumpint(0)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// dump varint uint64 length followed by memory contents
|
|
|
|
func dumpmemrange(data unsafe.Pointer, len uintptr) {
|
|
|
|
dumpint(uint64(len))
|
|
|
|
dwrite(data, len)
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpslice(b []byte) {
|
|
|
|
dumpint(uint64(len(b)))
|
|
|
|
if len(b) > 0 {
|
|
|
|
dwrite(unsafe.Pointer(&b[0]), uintptr(len(b)))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpstr(s string) {
|
|
|
|
sp := (*stringStruct)(unsafe.Pointer(&s))
|
|
|
|
dumpmemrange(sp.str, uintptr(sp.len))
|
|
|
|
}
|
|
|
|
|
|
|
|
// dump information for a type
|
|
|
|
func dumptype(t *_type) {
|
|
|
|
if t == nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we've definitely serialized the type before,
|
|
|
|
// no need to do it again.
|
|
|
|
b := &typecache[t.hash&(typeCacheBuckets-1)]
|
|
|
|
if t == b.t[0] {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
for i := 1; i < typeCacheAssoc; i++ {
|
|
|
|
if t == b.t[i] {
|
|
|
|
// Move-to-front
|
|
|
|
for j := i; j > 0; j-- {
|
|
|
|
b.t[j] = b.t[j-1]
|
|
|
|
}
|
|
|
|
b.t[0] = t
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Might not have been dumped yet. Dump it and
|
|
|
|
// remember we did so.
|
|
|
|
for j := typeCacheAssoc - 1; j > 0; j-- {
|
|
|
|
b.t[j] = b.t[j-1]
|
|
|
|
}
|
|
|
|
b.t[0] = t
|
|
|
|
|
|
|
|
// dump the type
|
|
|
|
dumpint(tagType)
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(t))))
|
|
|
|
dumpint(uint64(t.size))
|
|
|
|
if t.x == nil || t.x.pkgpath == nil || t.x.name == nil {
|
|
|
|
dumpstr(*t._string)
|
|
|
|
} else {
|
|
|
|
pkgpath := (*stringStruct)(unsafe.Pointer(&t.x.pkgpath))
|
|
|
|
name := (*stringStruct)(unsafe.Pointer(&t.x.name))
|
|
|
|
dumpint(uint64(uintptr(pkgpath.len) + 1 + uintptr(name.len)))
|
|
|
|
dwrite(pkgpath.str, uintptr(pkgpath.len))
|
|
|
|
dwritebyte('.')
|
|
|
|
dwrite(name.str, uintptr(name.len))
|
|
|
|
}
|
|
|
|
dumpbool(t.kind&kindDirectIface == 0 || t.kind&kindNoPointers == 0)
|
|
|
|
}
|
|
|
|
|
|
|
|
// dump an object
|
|
|
|
func dumpobj(obj unsafe.Pointer, size uintptr, bv bitvector) {
|
|
|
|
dumpbvtypes(&bv, obj)
|
|
|
|
dumpint(tagObject)
|
|
|
|
dumpint(uint64(uintptr(obj)))
|
|
|
|
dumpmemrange(obj, size)
|
|
|
|
dumpfields(bv)
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpotherroot(description string, to unsafe.Pointer) {
|
|
|
|
dumpint(tagOtherRoot)
|
|
|
|
dumpstr(description)
|
|
|
|
dumpint(uint64(uintptr(to)))
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpfinalizer(obj unsafe.Pointer, fn *funcval, fint *_type, ot *ptrtype) {
|
|
|
|
dumpint(tagFinalizer)
|
|
|
|
dumpint(uint64(uintptr(obj)))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(fn))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(fn.fn))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(fint))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(ot))))
|
|
|
|
}
|
|
|
|
|
|
|
|
type childInfo struct {
|
|
|
|
// Information passed up from the callee frame about
|
|
|
|
// the layout of the outargs region.
|
|
|
|
argoff uintptr // where the arguments start in the frame
|
|
|
|
arglen uintptr // size of args region
|
|
|
|
args bitvector // if args.n >= 0, pointer map of args region
|
|
|
|
sp *uint8 // callee sp
|
|
|
|
depth uintptr // depth in call stack (0 == most recent)
|
|
|
|
}
|
|
|
|
|
|
|
|
// dump kinds & offsets of interesting fields in bv
|
|
|
|
func dumpbv(cbv *bitvector, offset uintptr) {
|
|
|
|
bv := gobv(*cbv)
|
2015-01-16 12:43:38 -07:00
|
|
|
for i := uintptr(0); i < uintptr(bv.n); i += typeBitsWidth {
|
|
|
|
switch bv.bytedata[i/8] >> (i % 8) & typeMask {
|
2014-11-11 15:05:02 -07:00
|
|
|
default:
|
2014-12-27 21:58:00 -07:00
|
|
|
throw("unexpected pointer bits")
|
2015-01-16 12:43:38 -07:00
|
|
|
case typeDead:
|
|
|
|
// typeDead has already been processed in makeheapobjbv.
|
2014-11-11 15:05:02 -07:00
|
|
|
// We should only see it in stack maps, in which case we should continue processing.
|
2015-01-16 12:43:38 -07:00
|
|
|
case typeScalar:
|
2014-11-11 15:05:02 -07:00
|
|
|
// ok
|
2015-01-16 12:43:38 -07:00
|
|
|
case typePointer:
|
2014-11-11 15:05:02 -07:00
|
|
|
dumpint(fieldKindPtr)
|
2015-01-16 12:43:38 -07:00
|
|
|
dumpint(uint64(offset + i/typeBitsWidth*ptrSize))
|
2014-11-11 15:05:02 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpframe(s *stkframe, arg unsafe.Pointer) bool {
|
|
|
|
child := (*childInfo)(arg)
|
|
|
|
f := s.fn
|
|
|
|
|
|
|
|
// Figure out what we can about our stack map
|
|
|
|
pc := s.pc
|
|
|
|
if pc != f.entry {
|
|
|
|
pc--
|
|
|
|
}
|
|
|
|
pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, pc)
|
|
|
|
if pcdata == -1 {
|
|
|
|
// We do not have a valid pcdata value but there might be a
|
|
|
|
// stackmap for this function. It is likely that we are looking
|
|
|
|
// at the function prologue, assume so and hope for the best.
|
|
|
|
pcdata = 0
|
|
|
|
}
|
|
|
|
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
|
|
|
|
|
|
|
|
// Dump any types we will need to resolve Efaces.
|
|
|
|
if child.args.n >= 0 {
|
|
|
|
dumpbvtypes(&child.args, unsafe.Pointer(s.sp+child.argoff))
|
|
|
|
}
|
|
|
|
var bv bitvector
|
|
|
|
if stkmap != nil && stkmap.n > 0 {
|
|
|
|
bv = stackmapdata(stkmap, pcdata)
|
2015-01-16 12:43:38 -07:00
|
|
|
dumpbvtypes(&bv, unsafe.Pointer(s.varp-uintptr(bv.n/typeBitsWidth*ptrSize)))
|
2014-11-11 15:05:02 -07:00
|
|
|
} else {
|
|
|
|
bv.n = -1
|
|
|
|
}
|
|
|
|
|
|
|
|
// Dump main body of stack frame.
|
|
|
|
dumpint(tagStackFrame)
|
|
|
|
dumpint(uint64(s.sp)) // lowest address in frame
|
|
|
|
dumpint(uint64(child.depth)) // # of frames deep on the stack
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(child.sp)))) // sp of child, or 0 if bottom of stack
|
|
|
|
dumpmemrange(unsafe.Pointer(s.sp), s.fp-s.sp) // frame contents
|
|
|
|
dumpint(uint64(f.entry))
|
|
|
|
dumpint(uint64(s.pc))
|
|
|
|
dumpint(uint64(s.continpc))
|
2014-12-29 00:16:32 -07:00
|
|
|
name := funcname(f)
|
2014-11-11 15:05:02 -07:00
|
|
|
if name == "" {
|
|
|
|
name = "unknown function"
|
|
|
|
}
|
|
|
|
dumpstr(name)
|
|
|
|
|
|
|
|
// Dump fields in the outargs section
|
|
|
|
if child.args.n >= 0 {
|
|
|
|
dumpbv(&child.args, child.argoff)
|
|
|
|
} else {
|
|
|
|
// conservative - everything might be a pointer
|
|
|
|
for off := child.argoff; off < child.argoff+child.arglen; off += ptrSize {
|
|
|
|
dumpint(fieldKindPtr)
|
|
|
|
dumpint(uint64(off))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Dump fields in the local vars section
|
|
|
|
if stkmap == nil {
|
|
|
|
// No locals information, dump everything.
|
|
|
|
for off := child.arglen; off < s.varp-s.sp; off += ptrSize {
|
|
|
|
dumpint(fieldKindPtr)
|
|
|
|
dumpint(uint64(off))
|
|
|
|
}
|
|
|
|
} else if stkmap.n < 0 {
|
|
|
|
// Locals size information, dump just the locals.
|
|
|
|
size := uintptr(-stkmap.n)
|
|
|
|
for off := s.varp - size - s.sp; off < s.varp-s.sp; off += ptrSize {
|
|
|
|
dumpint(fieldKindPtr)
|
|
|
|
dumpint(uint64(off))
|
|
|
|
}
|
|
|
|
} else if stkmap.n > 0 {
|
|
|
|
// Locals bitmap information, scan just the pointers in
|
|
|
|
// locals.
|
2015-01-16 12:43:38 -07:00
|
|
|
dumpbv(&bv, s.varp-uintptr(bv.n)/typeBitsWidth*ptrSize-s.sp)
|
2014-11-11 15:05:02 -07:00
|
|
|
}
|
|
|
|
dumpint(fieldKindEol)
|
|
|
|
|
|
|
|
// Record arg info for parent.
|
|
|
|
child.argoff = s.argp - s.fp
|
|
|
|
child.arglen = s.arglen
|
|
|
|
child.sp = (*uint8)(unsafe.Pointer(s.sp))
|
|
|
|
child.depth++
|
|
|
|
stkmap = (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
|
|
|
|
if stkmap != nil {
|
|
|
|
child.args = stackmapdata(stkmap, pcdata)
|
|
|
|
} else {
|
|
|
|
child.args.n = -1
|
|
|
|
}
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpgoroutine(gp *g) {
|
|
|
|
var sp, pc, lr uintptr
|
|
|
|
if gp.syscallsp != 0 {
|
|
|
|
sp = gp.syscallsp
|
|
|
|
pc = gp.syscallpc
|
|
|
|
lr = 0
|
|
|
|
} else {
|
|
|
|
sp = gp.sched.sp
|
|
|
|
pc = gp.sched.pc
|
|
|
|
lr = gp.sched.lr
|
|
|
|
}
|
|
|
|
|
|
|
|
dumpint(tagGoroutine)
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(gp))))
|
|
|
|
dumpint(uint64(sp))
|
|
|
|
dumpint(uint64(gp.goid))
|
|
|
|
dumpint(uint64(gp.gopc))
|
|
|
|
dumpint(uint64(readgstatus(gp)))
|
2015-02-07 05:31:18 -07:00
|
|
|
dumpbool(isSystemGoroutine(gp))
|
2014-11-11 15:05:02 -07:00
|
|
|
dumpbool(false) // isbackground
|
|
|
|
dumpint(uint64(gp.waitsince))
|
|
|
|
dumpstr(gp.waitreason)
|
|
|
|
dumpint(uint64(uintptr(gp.sched.ctxt)))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(gp.m))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(gp._defer))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(gp._panic))))
|
|
|
|
|
|
|
|
// dump stack
|
|
|
|
var child childInfo
|
|
|
|
child.args.n = -1
|
|
|
|
child.arglen = 0
|
|
|
|
child.sp = nil
|
|
|
|
child.depth = 0
|
|
|
|
gentraceback(pc, sp, lr, gp, 0, nil, 0x7fffffff, dumpframe, noescape(unsafe.Pointer(&child)), 0)
|
|
|
|
|
|
|
|
// dump defer & panic records
|
|
|
|
for d := gp._defer; d != nil; d = d.link {
|
|
|
|
dumpint(tagDefer)
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(d))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(gp))))
|
2014-12-08 15:18:58 -07:00
|
|
|
dumpint(uint64(d.sp))
|
2014-11-11 15:05:02 -07:00
|
|
|
dumpint(uint64(d.pc))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(d.fn))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(d.fn.fn))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(d.link))))
|
|
|
|
}
|
|
|
|
for p := gp._panic; p != nil; p = p.link {
|
|
|
|
dumpint(tagPanic)
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(p))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(gp))))
|
|
|
|
eface := (*eface)(unsafe.Pointer(&p.arg))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(eface._type))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(eface.data))))
|
|
|
|
dumpint(0) // was p->defer, no longer recorded
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(p.link))))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpgs() {
|
|
|
|
// goroutines & stacks
|
|
|
|
for i := 0; uintptr(i) < allglen; i++ {
|
|
|
|
gp := allgs[i]
|
|
|
|
status := readgstatus(gp) // The world is stopped so gp will not be in a scan state.
|
|
|
|
switch status {
|
|
|
|
default:
|
|
|
|
print("runtime: unexpected G.status ", hex(status), "\n")
|
2014-12-27 21:58:00 -07:00
|
|
|
throw("dumpgs in STW - bad status")
|
2014-11-11 15:05:02 -07:00
|
|
|
case _Gdead:
|
|
|
|
// ok
|
|
|
|
case _Grunnable,
|
|
|
|
_Gsyscall,
|
|
|
|
_Gwaiting:
|
|
|
|
dumpgoroutine(gp)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func finq_callback(fn *funcval, obj unsafe.Pointer, nret uintptr, fint *_type, ot *ptrtype) {
|
|
|
|
dumpint(tagQueuedFinalizer)
|
|
|
|
dumpint(uint64(uintptr(obj)))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(fn))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(fn.fn))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(fint))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(ot))))
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumproots() {
|
2015-03-29 15:59:00 -06:00
|
|
|
// TODO(mwhudson): dump datamask etc from all objects
|
2014-11-11 15:05:02 -07:00
|
|
|
// data segment
|
2015-04-06 18:55:02 -06:00
|
|
|
dumpbvtypes(&firstmoduledata.gcdatamask, unsafe.Pointer(firstmoduledata.data))
|
2014-11-11 15:05:02 -07:00
|
|
|
dumpint(tagData)
|
2015-04-06 18:55:02 -06:00
|
|
|
dumpint(uint64(firstmoduledata.data))
|
|
|
|
dumpmemrange(unsafe.Pointer(firstmoduledata.data), firstmoduledata.edata-firstmoduledata.data)
|
|
|
|
dumpfields(firstmoduledata.gcdatamask)
|
2014-11-11 15:05:02 -07:00
|
|
|
|
|
|
|
// bss segment
|
2015-04-06 18:55:02 -06:00
|
|
|
dumpbvtypes(&firstmoduledata.gcbssmask, unsafe.Pointer(firstmoduledata.bss))
|
2014-11-11 15:05:02 -07:00
|
|
|
dumpint(tagBSS)
|
2015-04-06 18:55:02 -06:00
|
|
|
dumpint(uint64(firstmoduledata.bss))
|
|
|
|
dumpmemrange(unsafe.Pointer(firstmoduledata.bss), firstmoduledata.ebss-firstmoduledata.bss)
|
|
|
|
dumpfields(firstmoduledata.gcbssmask)
|
2014-11-11 15:05:02 -07:00
|
|
|
|
|
|
|
// MSpan.types
|
|
|
|
allspans := h_allspans
|
|
|
|
for spanidx := uint32(0); spanidx < mheap_.nspan; spanidx++ {
|
|
|
|
s := allspans[spanidx]
|
|
|
|
if s.state == _MSpanInUse {
|
|
|
|
// Finalizers
|
|
|
|
for sp := s.specials; sp != nil; sp = sp.next {
|
|
|
|
if sp.kind != _KindSpecialFinalizer {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
spf := (*specialfinalizer)(unsafe.Pointer(sp))
|
|
|
|
p := unsafe.Pointer((uintptr(s.start) << _PageShift) + uintptr(spf.special.offset))
|
|
|
|
dumpfinalizer(p, spf.fn, spf.fint, spf.ot)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Finalizer queue
|
|
|
|
iterate_finq(finq_callback)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Bit vector of free marks.
|
|
|
|
// Needs to be as big as the largest number of objects per span.
|
|
|
|
var freemark [_PageSize / 8]bool
|
|
|
|
|
|
|
|
func dumpobjs() {
|
|
|
|
for i := uintptr(0); i < uintptr(mheap_.nspan); i++ {
|
|
|
|
s := h_allspans[i]
|
|
|
|
if s.state != _MSpanInUse {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
p := uintptr(s.start << _PageShift)
|
|
|
|
size := s.elemsize
|
|
|
|
n := (s.npages << _PageShift) / size
|
|
|
|
if n > uintptr(len(freemark)) {
|
2014-12-27 21:58:00 -07:00
|
|
|
throw("freemark array doesn't have enough entries")
|
2014-11-11 15:05:02 -07:00
|
|
|
}
|
2014-11-20 10:08:13 -07:00
|
|
|
for l := s.freelist; l.ptr() != nil; l = l.ptr().next {
|
|
|
|
freemark[(uintptr(l)-p)/size] = true
|
2014-11-11 15:05:02 -07:00
|
|
|
}
|
|
|
|
for j := uintptr(0); j < n; j, p = j+1, p+size {
|
|
|
|
if freemark[j] {
|
|
|
|
freemark[j] = false
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
dumpobj(unsafe.Pointer(p), size, makeheapobjbv(p, size))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpparams() {
|
|
|
|
dumpint(tagParams)
|
|
|
|
x := uintptr(1)
|
|
|
|
if *(*byte)(unsafe.Pointer(&x)) == 1 {
|
|
|
|
dumpbool(false) // little-endian ptrs
|
|
|
|
} else {
|
|
|
|
dumpbool(true) // big-endian ptrs
|
|
|
|
}
|
|
|
|
dumpint(ptrSize)
|
|
|
|
dumpint(uint64(mheap_.arena_start))
|
|
|
|
dumpint(uint64(mheap_.arena_used))
|
|
|
|
dumpint(thechar)
|
|
|
|
dumpstr(goexperiment)
|
|
|
|
dumpint(uint64(ncpu))
|
|
|
|
}
|
|
|
|
|
|
|
|
func itab_callback(tab *itab) {
|
|
|
|
t := tab._type
|
|
|
|
// Dump a map from itab* to the type of its data field.
|
|
|
|
// We want this map so we can deduce types of interface referents.
|
|
|
|
if t.kind&kindDirectIface == 0 {
|
|
|
|
// indirect - data slot is a pointer to t.
|
|
|
|
dumptype(t.ptrto)
|
|
|
|
dumpint(tagItab)
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(tab))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(t.ptrto))))
|
|
|
|
} else if t.kind&kindNoPointers == 0 {
|
|
|
|
// t is pointer-like - data slot is a t.
|
|
|
|
dumptype(t)
|
|
|
|
dumpint(tagItab)
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(tab))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(t))))
|
|
|
|
} else {
|
|
|
|
// Data slot is a scalar. Dump type just for fun.
|
|
|
|
// With pointer-only interfaces, this shouldn't happen.
|
|
|
|
dumptype(t)
|
|
|
|
dumpint(tagItab)
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(tab))))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(t))))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpitabs() {
|
|
|
|
iterate_itabs(itab_callback)
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpms() {
|
|
|
|
for mp := allm; mp != nil; mp = mp.alllink {
|
|
|
|
dumpint(tagOSThread)
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(mp))))
|
|
|
|
dumpint(uint64(mp.id))
|
|
|
|
dumpint(mp.procid)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpmemstats() {
|
|
|
|
dumpint(tagMemStats)
|
|
|
|
dumpint(memstats.alloc)
|
|
|
|
dumpint(memstats.total_alloc)
|
|
|
|
dumpint(memstats.sys)
|
|
|
|
dumpint(memstats.nlookup)
|
|
|
|
dumpint(memstats.nmalloc)
|
|
|
|
dumpint(memstats.nfree)
|
|
|
|
dumpint(memstats.heap_alloc)
|
|
|
|
dumpint(memstats.heap_sys)
|
|
|
|
dumpint(memstats.heap_idle)
|
|
|
|
dumpint(memstats.heap_inuse)
|
|
|
|
dumpint(memstats.heap_released)
|
|
|
|
dumpint(memstats.heap_objects)
|
|
|
|
dumpint(memstats.stacks_inuse)
|
|
|
|
dumpint(memstats.stacks_sys)
|
|
|
|
dumpint(memstats.mspan_inuse)
|
|
|
|
dumpint(memstats.mspan_sys)
|
|
|
|
dumpint(memstats.mcache_inuse)
|
|
|
|
dumpint(memstats.mcache_sys)
|
|
|
|
dumpint(memstats.buckhash_sys)
|
|
|
|
dumpint(memstats.gc_sys)
|
|
|
|
dumpint(memstats.other_sys)
|
|
|
|
dumpint(memstats.next_gc)
|
|
|
|
dumpint(memstats.last_gc)
|
|
|
|
dumpint(memstats.pause_total_ns)
|
|
|
|
for i := 0; i < 256; i++ {
|
|
|
|
dumpint(memstats.pause_ns[i])
|
|
|
|
}
|
|
|
|
dumpint(uint64(memstats.numgc))
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpmemprof_callback(b *bucket, nstk uintptr, pstk *uintptr, size, allocs, frees uintptr) {
|
|
|
|
stk := (*[100000]uintptr)(unsafe.Pointer(pstk))
|
|
|
|
dumpint(tagMemProf)
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(b))))
|
|
|
|
dumpint(uint64(size))
|
|
|
|
dumpint(uint64(nstk))
|
|
|
|
for i := uintptr(0); i < nstk; i++ {
|
|
|
|
pc := stk[i]
|
|
|
|
f := findfunc(pc)
|
|
|
|
if f == nil {
|
|
|
|
var buf [64]byte
|
|
|
|
n := len(buf)
|
|
|
|
n--
|
|
|
|
buf[n] = ')'
|
|
|
|
if pc == 0 {
|
|
|
|
n--
|
|
|
|
buf[n] = '0'
|
|
|
|
} else {
|
|
|
|
for pc > 0 {
|
|
|
|
n--
|
|
|
|
buf[n] = "0123456789abcdef"[pc&15]
|
|
|
|
pc >>= 4
|
|
|
|
}
|
|
|
|
}
|
|
|
|
n--
|
|
|
|
buf[n] = 'x'
|
|
|
|
n--
|
|
|
|
buf[n] = '0'
|
|
|
|
n--
|
|
|
|
buf[n] = '('
|
|
|
|
dumpslice(buf[n:])
|
|
|
|
dumpstr("?")
|
|
|
|
dumpint(0)
|
|
|
|
} else {
|
2014-12-29 00:16:32 -07:00
|
|
|
dumpstr(funcname(f))
|
2014-11-11 15:05:02 -07:00
|
|
|
if i > 0 && pc > f.entry {
|
|
|
|
pc--
|
|
|
|
}
|
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).
Scalararg and ptrarg are also untyped and therefore error-prone.
Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.
For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.
Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).
The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.
Correct the misnomer by naming the replacement function systemstack.
Fix a few references to "M stack" in code.
The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.
This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)
LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
2014-11-12 12:54:31 -07:00
|
|
|
file, line := funcline(f, pc)
|
2014-11-11 15:05:02 -07:00
|
|
|
dumpstr(file)
|
|
|
|
dumpint(uint64(line))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dumpint(uint64(allocs))
|
|
|
|
dumpint(uint64(frees))
|
|
|
|
}
|
|
|
|
|
|
|
|
func dumpmemprof() {
|
|
|
|
iterate_memprof(dumpmemprof_callback)
|
|
|
|
allspans := h_allspans
|
|
|
|
for spanidx := uint32(0); spanidx < mheap_.nspan; spanidx++ {
|
|
|
|
s := allspans[spanidx]
|
|
|
|
if s.state != _MSpanInUse {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
for sp := s.specials; sp != nil; sp = sp.next {
|
|
|
|
if sp.kind != _KindSpecialProfile {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
spp := (*specialprofile)(unsafe.Pointer(sp))
|
|
|
|
p := uintptr(s.start<<_PageShift) + uintptr(spp.special.offset)
|
|
|
|
dumpint(tagAllocSample)
|
|
|
|
dumpint(uint64(p))
|
|
|
|
dumpint(uint64(uintptr(unsafe.Pointer(spp.b))))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var dumphdr = []byte("go1.4 heap dump\n")
|
|
|
|
|
|
|
|
func mdump() {
|
|
|
|
// make sure we're done sweeping
|
|
|
|
for i := uintptr(0); i < uintptr(mheap_.nspan); i++ {
|
|
|
|
s := h_allspans[i]
|
|
|
|
if s.state == _MSpanInUse {
|
|
|
|
mSpan_EnsureSwept(s)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
memclr(unsafe.Pointer(&typecache), unsafe.Sizeof(typecache))
|
|
|
|
dwrite(unsafe.Pointer(&dumphdr[0]), uintptr(len(dumphdr)))
|
|
|
|
dumpparams()
|
|
|
|
dumpitabs()
|
|
|
|
dumpobjs()
|
|
|
|
dumpgs()
|
|
|
|
dumpms()
|
|
|
|
dumproots()
|
|
|
|
dumpmemstats()
|
|
|
|
dumpmemprof()
|
|
|
|
dumpint(tagEOF)
|
|
|
|
flush()
|
|
|
|
}
|
|
|
|
|
[dev.cc] runtime: delete scalararg, ptrarg; rename onM to systemstack
Scalararg and ptrarg are not "signal safe".
Go code filling them out can be interrupted by a signal,
and then the signal handler runs, and if it also ends up
in Go code that uses scalararg or ptrarg, now the old
values have been smashed.
For the pieces of code that do need to run in a signal handler,
we introduced onM_signalok, which is really just onM
except that the _signalok is meant to convey that the caller
asserts that scalarg and ptrarg will be restored to their old
values after the call (instead of the usual behavior, zeroing them).
Scalararg and ptrarg are also untyped and therefore error-prone.
Go code can always pass a closure instead of using scalararg
and ptrarg; they were only really necessary for C code.
And there's no more C code.
For all these reasons, delete scalararg and ptrarg, converting
the few remaining references to use closures.
Once those are gone, there is no need for a distinction between
onM and onM_signalok, so replace both with a single function
equivalent to the current onM_signalok (that is, it can be called
on any of the curg, g0, and gsignal stacks).
The name onM and the phrase 'm stack' are misnomers,
because on most system an M has two system stacks:
the main thread stack and the signal handling stack.
Correct the misnomer by naming the replacement function systemstack.
Fix a few references to "M stack" in code.
The main motivation for this change is to eliminate scalararg/ptrarg.
Rick and I have already seen them cause problems because
the calling sequence m.ptrarg[0] = p is a heap pointer assignment,
so it gets a write barrier. The write barrier also uses onM, so it has
all the same problems as if it were being invoked by a signal handler.
We worked around this by saving and restoring the old values
and by calling onM_signalok, but there's no point in keeping this nice
home for bugs around any longer.
This CL also changes funcline to return the file name as a result
instead of filling in a passed-in *string. (The *string signature is
left over from when the code was written in and called from C.)
That's arguably an unrelated change, except that once I had done
the ptrarg/scalararg/onM cleanup I started getting false positives
about the *string argument escaping (not allowed in package runtime).
The compiler is wrong, but the easiest fix is to write the code like
Go code instead of like C code. I am a bit worried that the compiler
is wrong because of some use of uninitialized memory in the escape
analysis. If that's the reason, it will go away when we convert the
compiler to Go. (And if not, we'll debug it the next time.)
LGTM=khr
R=r, khr
CC=austin, golang-codereviews, iant, rlh
https://golang.org/cl/174950043
2014-11-12 12:54:31 -07:00
|
|
|
func writeheapdump_m(fd uintptr) {
|
2014-11-11 15:05:02 -07:00
|
|
|
_g_ := getg()
|
|
|
|
casgstatus(_g_.m.curg, _Grunning, _Gwaiting)
|
|
|
|
_g_.waitreason = "dumping heap"
|
|
|
|
|
|
|
|
// Update stats so we can dump them.
|
|
|
|
// As a side effect, flushes all the MCaches so the MSpan.freelist
|
|
|
|
// lists contain all the free objects.
|
|
|
|
updatememstats(nil)
|
|
|
|
|
|
|
|
// Set dump file.
|
|
|
|
dumpfd = fd
|
|
|
|
|
|
|
|
// Call dump routine.
|
|
|
|
mdump()
|
|
|
|
|
|
|
|
// Reset dump file.
|
|
|
|
dumpfd = 0
|
|
|
|
if tmpbuf != nil {
|
|
|
|
sysFree(unsafe.Pointer(&tmpbuf[0]), uintptr(len(tmpbuf)), &memstats.other_sys)
|
|
|
|
tmpbuf = nil
|
|
|
|
}
|
|
|
|
|
|
|
|
casgstatus(_g_.m.curg, _Gwaiting, _Grunning)
|
|
|
|
}
|
|
|
|
|
|
|
|
// dumpint() the kind & offset of each field in an object.
|
|
|
|
func dumpfields(bv bitvector) {
|
|
|
|
dumpbv(&bv, 0)
|
|
|
|
dumpint(fieldKindEol)
|
|
|
|
}
|
|
|
|
|
|
|
|
// The heap dump reader needs to be able to disambiguate
|
|
|
|
// Eface entries. So it needs to know every type that might
|
|
|
|
// appear in such an entry. The following routine accomplishes that.
|
|
|
|
// TODO(rsc, khr): Delete - no longer possible.
|
|
|
|
|
|
|
|
// Dump all the types that appear in the type field of
|
|
|
|
// any Eface described by this bit vector.
|
|
|
|
func dumpbvtypes(bv *bitvector, base unsafe.Pointer) {
|
|
|
|
}
|
|
|
|
|
|
|
|
func makeheapobjbv(p uintptr, size uintptr) bitvector {
|
|
|
|
// Extend the temp buffer if necessary.
|
|
|
|
nptr := size / ptrSize
|
2015-01-16 12:43:38 -07:00
|
|
|
if uintptr(len(tmpbuf)) < nptr*typeBitsWidth/8+1 {
|
2014-11-11 15:05:02 -07:00
|
|
|
if tmpbuf != nil {
|
|
|
|
sysFree(unsafe.Pointer(&tmpbuf[0]), uintptr(len(tmpbuf)), &memstats.other_sys)
|
|
|
|
}
|
2015-01-16 12:43:38 -07:00
|
|
|
n := nptr*typeBitsWidth/8 + 1
|
2014-11-11 15:05:02 -07:00
|
|
|
p := sysAlloc(n, &memstats.other_sys)
|
|
|
|
if p == nil {
|
2014-12-27 21:58:00 -07:00
|
|
|
throw("heapdump: out of memory")
|
2014-11-11 15:05:02 -07:00
|
|
|
}
|
|
|
|
tmpbuf = (*[1 << 30]byte)(p)[:n]
|
|
|
|
}
|
2015-01-16 12:43:38 -07:00
|
|
|
// Convert heap bitmap to type bitmap.
|
|
|
|
i := uintptr(0)
|
|
|
|
hbits := heapBitsForAddr(p)
|
|
|
|
for ; i < nptr; i++ {
|
|
|
|
bits := hbits.typeBits()
|
|
|
|
if bits == typeDead {
|
|
|
|
break // end of object
|
2014-11-11 15:05:02 -07:00
|
|
|
}
|
2015-01-16 12:43:38 -07:00
|
|
|
hbits = hbits.next()
|
|
|
|
tmpbuf[i*typeBitsWidth/8] &^= (typeMask << ((i * typeBitsWidth) % 8))
|
|
|
|
tmpbuf[i*typeBitsWidth/8] |= bits << ((i * typeBitsWidth) % 8)
|
2014-11-11 15:05:02 -07:00
|
|
|
}
|
2015-01-16 12:43:38 -07:00
|
|
|
return bitvector{int32(i * typeBitsWidth), &tmpbuf[0]}
|
2014-11-11 15:05:02 -07:00
|
|
|
}
|