1
0
mirror of https://github.com/golang/go synced 2024-11-19 05:24:42 -07:00
go/ssa/interp/value.go

488 lines
10 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package interp
// Values
//
// All interpreter values are "boxed" in the empty interface, value.
// The range of possible dynamic types within value are:
//
// - bool
// - numbers (all built-in int/float/complex types are distinguished)
// - string
// - map[value]value --- maps for which usesBuiltinMap(keyType)
// *hashmap --- maps for which !usesBuiltinMap(keyType)
// - chan value
// - []value --- slices
// - iface --- interfaces.
// - structure --- structs. Fields are ordered and accessed by numeric indices.
// - array --- arrays.
// - *value --- pointers. Careful: *value is a distinct type from *array etc.
// - *ssa.Function \
// *ssa.Builtin } --- functions. A nil 'func' is always of type *ssa.Function.
// *closure /
// - tuple --- as returned by Return, Next, "value,ok" modes, etc.
// - iter --- iterators from 'range' over map or string.
// - bad --- a poison pill for locals that have gone out of scope.
// - rtype -- the interpreter's concrete implementation of reflect.Type
//
// Note that nil is not on this list.
//
// Pay close attention to whether or not the dynamic type is a pointer.
// The compiler cannot help you since value is an empty interface.
import (
"bytes"
"fmt"
"io"
"reflect"
"strings"
"sync"
"unsafe"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/go/types/typemap"
"code.google.com/p/go.tools/ssa"
)
type value interface{}
type tuple []value
type array []value
type iface struct {
t types.Type // never an "untyped" type
v value
}
type structure []value
// For map, array, *array, slice, string or channel.
type iter interface {
// next returns a Tuple (key, value, ok).
// key and value are unaliased, e.g. copies of the sequence element.
next() tuple
}
type closure struct {
Fn *ssa.Function
Env []value
}
type bad struct{}
type rtype struct {
t types.Type
}
// Hash functions and equivalence relation:
// hashString computes the FNV hash of s.
func hashString(s string) int {
var h uint32
for i := 0; i < len(s); i++ {
h ^= uint32(s[i])
h *= 16777619
}
return int(h)
}
var (
mu sync.Mutex
hasher = typemap.MakeHasher()
)
// hashType returns a hash for t such that
// types.IsIdentical(x, y) => hashType(x) == hashType(y).
func hashType(t types.Type) int {
mu.Lock()
h := int(hasher.Hash(t))
mu.Unlock()
return h
}
// usesBuiltinMap returns true if the built-in hash function and
// equivalence relation for type t are consistent with those of the
// interpreter's representation of type t. Such types are: all basic
// types (bool, numbers, string), pointers and channels.
//
// usesBuiltinMap returns false for types that require a custom map
// implementation: interfaces, arrays and structs.
//
// Panic ensues if t is an invalid map key type: function, map or slice.
func usesBuiltinMap(t types.Type) bool {
switch t := t.(type) {
case *types.Basic, *types.Chan, *types.Pointer:
return true
case *types.Named:
return usesBuiltinMap(t.Underlying())
case *types.Interface, *types.Array, *types.Struct:
return false
}
panic(fmt.Sprintf("invalid map key type: %T", t))
}
func (x array) eq(t types.Type, _y interface{}) bool {
y := _y.(array)
tElt := t.Underlying().(*types.Array).Elem()
for i, xi := range x {
if !equals(tElt, xi, y[i]) {
return false
}
}
return true
}
func (x array) hash(t types.Type) int {
h := 0
tElt := t.Underlying().(*types.Array).Elem()
for _, xi := range x {
h += hash(tElt, xi)
}
return h
}
func (x structure) eq(t types.Type, _y interface{}) bool {
y := _y.(structure)
tStruct := t.Underlying().(*types.Struct)
for i, n := 0, tStruct.NumFields(); i < n; i++ {
if f := tStruct.Field(i); !f.Anonymous() {
if !equals(f.Type(), x[i], y[i]) {
return false
}
}
}
return true
}
func (x structure) hash(t types.Type) int {
tStruct := t.Underlying().(*types.Struct)
h := 0
for i, n := 0, tStruct.NumFields(); i < n; i++ {
if f := tStruct.Field(i); !f.Anonymous() {
h += hash(f.Type(), x[i])
}
}
return h
}
// nil-tolerant variant of types.IsIdentical.
func sameType(x, y types.Type) bool {
if x == nil {
return y == nil
}
return y != nil && types.IsIdentical(x, y)
}
func (x iface) eq(t types.Type, _y interface{}) bool {
y := _y.(iface)
return sameType(x.t, y.t) && (x.t == nil || equals(x.t, x.v, y.v))
}
func (x iface) hash(_ types.Type) int {
return hashType(x.t)*8581 + hash(x.t, x.v)
}
func (x rtype) hash(_ types.Type) int {
return hashType(x.t)
}
func (x rtype) eq(_ types.Type, y interface{}) bool {
return types.IsIdentical(x.t, y.(rtype).t)
}
// equals returns true iff x and y are equal according to Go's
// linguistic equivalence relation for type t.
// In a well-typed program, the dynamic types of x and y are
// guaranteed equal.
func equals(t types.Type, x, y value) bool {
switch x := x.(type) {
case bool:
return x == y.(bool)
case int:
return x == y.(int)
case int8:
return x == y.(int8)
case int16:
return x == y.(int16)
case int32:
return x == y.(int32)
case int64:
return x == y.(int64)
case uint:
return x == y.(uint)
case uint8:
return x == y.(uint8)
case uint16:
return x == y.(uint16)
case uint32:
return x == y.(uint32)
case uint64:
return x == y.(uint64)
case uintptr:
return x == y.(uintptr)
case float32:
return x == y.(float32)
case float64:
return x == y.(float64)
case complex64:
return x == y.(complex64)
case complex128:
return x == y.(complex128)
case string:
return x == y.(string)
case *value:
return x == y.(*value)
case chan value:
return x == y.(chan value)
case structure:
return x.eq(t, y)
case array:
return x.eq(t, y)
case iface:
return x.eq(t, y)
case rtype:
return x.eq(t, y)
}
// Since map, func and slice don't support comparison, this
// case is only reachable if one of x or y is literally nil
// (handled in eqnil) or via interface{} values.
go.tools/ssa: implement correct control flow for recovered panic. A function such as this: func one() (x int) { defer func() { recover() }() x = 1 panic("return") } that combines named return parameters (NRPs) with deferred calls that call recover, may return non-zero values despite the fact it doesn't even contain a return statement. (!) This requires a change to the SSA API: all functions' control-flow graphs now have a second entry point, called Recover, which is the block at which control flow resumes after a recovered panic. The Recover block simply loads the NRPs and returns them. As an optimization, most functions don't need a Recover block, so it is omitted. In fact it is only needed for functions that have NRPs and defer a call to another function that _may_ call recover. Dataflow analysis of SSA now requires extra work, since every may-panic instruction has an implicit control-flow edge to the Recover block. The only dataflow analysis so far implemented is SSA renaming, for which we make the following simplifying assumption: the Recover block only loads the NRPs and returns. This means we don't really need to analyze it, we can just skip the "lifting" of such NRPs. We also special-case the Recover block in the dominance computation. Rejected alternative approaches: - Specifying a Recover block for every defer instruction (like a traditional exception handler). This seemed like excessive generality, since Go programs only need the same degenerate form of Recover block. - Adding an instruction to set the Recover block immediately after the named return values are set up, so that dominance can be computed without special-casing. This didn't seem worth the effort. Interpreter: - This CL completely reimplements the panic/recover/ defer logic in the interpreter. It's clearer and simpler and closer to the model in the spec. - Some runtime panic messages have been changed to be closer to gc's, since tests depend on it. - The interpreter now requires that the runtime.runtimeError type be part of the SSA program. This requires that clients import this package prior to invoking the interpreter. This in turn requires (Importer).ImportPackage(path string), which this CL adds. - All $GOROOT/test/recover{,1,2,3}.go tests are now passing. NB, the bug described in coverage.go (defer/recover in a concatenated init function) remains. Will be fixed in a follow-up. Fixes golang/go#6381 R=gri CC=crawshaw, golang-dev https://golang.org/cl/13844043
2013-10-14 13:38:56 -06:00
panic(fmt.Sprintf("comparing uncomparable type %s", t))
}
// Returns an integer hash of x such that equals(x, y) => hash(x) == hash(y).
func hash(t types.Type, x value) int {
switch x := x.(type) {
case bool:
if x {
return 1
}
return 0
case int:
return x
case int8:
return int(x)
case int16:
return int(x)
case int32:
return int(x)
case int64:
return int(x)
case uint:
return int(x)
case uint8:
return int(x)
case uint16:
return int(x)
case uint32:
return int(x)
case uint64:
return int(x)
case uintptr:
return int(x)
case float32:
return int(x)
case float64:
return int(x)
case complex64:
return int(real(x))
case complex128:
return int(real(x))
case string:
return hashString(x)
case *value:
return int(uintptr(unsafe.Pointer(x)))
case chan value:
return int(uintptr(reflect.ValueOf(x).Pointer()))
case structure:
return x.hash(t)
case array:
return x.hash(t)
case iface:
return x.hash(t)
case rtype:
return x.hash(t)
}
panic(fmt.Sprintf("%T is unhashable", x))
}
// copyVal returns a copy of value v.
// TODO(adonovan): add tests of aliasing and mutation.
func copyVal(v value) value {
if v == nil {
panic("copyVal(nil)")
}
switch v := v.(type) {
case bool, int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64, uintptr, float32, float64, complex64, complex128, string, unsafe.Pointer:
return v
case map[value]value:
return v
case *hashmap:
return v
case chan value:
return v
case *value:
return v
case *ssa.Function, *ssa.Builtin, *closure:
return v
case iface:
return v
case []value:
return v
case structure:
a := make(structure, len(v))
copy(a, v)
return a
case array:
a := make(array, len(v))
copy(a, v)
return a
case tuple:
break
case rtype:
return v
}
panic(fmt.Sprintf("cannot copy %T", v))
}
// Prints in the style of built-in println.
// (More or less; in gc println is actually a compiler intrinsic and
// can distinguish println(1) from println(interface{}(1)).)
func toWriter(w io.Writer, v value) {
switch v := v.(type) {
case nil, bool, int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64, uintptr, float32, float64, complex64, complex128, string:
fmt.Fprintf(w, "%v", v)
case map[value]value:
io.WriteString(w, "map[")
sep := ""
for k, e := range v {
io.WriteString(w, sep)
sep = " "
toWriter(w, k)
io.WriteString(w, ":")
toWriter(w, e)
}
io.WriteString(w, "]")
case *hashmap:
io.WriteString(w, "map[")
sep := " "
for _, e := range v.table {
for e != nil {
io.WriteString(w, sep)
sep = " "
toWriter(w, e.key)
io.WriteString(w, ":")
toWriter(w, e.value)
e = e.next
}
}
io.WriteString(w, "]")
case chan value:
fmt.Fprintf(w, "%v", v) // (an address)
case *value:
if v == nil {
io.WriteString(w, "<nil>")
} else {
fmt.Fprintf(w, "%p", v)
}
case iface:
fmt.Fprintf(w, "(%s, ", v.t)
toWriter(w, v.v)
io.WriteString(w, ")")
case structure:
io.WriteString(w, "{")
for i, e := range v {
if i > 0 {
io.WriteString(w, " ")
}
toWriter(w, e)
}
io.WriteString(w, "}")
case array:
io.WriteString(w, "[")
for i, e := range v {
if i > 0 {
io.WriteString(w, " ")
}
toWriter(w, e)
}
io.WriteString(w, "]")
case []value:
io.WriteString(w, "[")
for i, e := range v {
if i > 0 {
io.WriteString(w, " ")
}
toWriter(w, e)
}
io.WriteString(w, "]")
case *ssa.Function, *ssa.Builtin, *closure:
fmt.Fprintf(w, "%p", v) // (an address)
case rtype:
io.WriteString(w, v.t.String())
case tuple:
// Unreachable in well-formed Go programs
io.WriteString(w, "(")
for i, e := range v {
if i > 0 {
io.WriteString(w, ", ")
}
toWriter(w, e)
}
io.WriteString(w, ")")
default:
fmt.Fprintf(w, "<%T>", v)
}
}
// Implements printing of Go values in the style of built-in println.
func toString(v value) string {
var b bytes.Buffer
toWriter(&b, v)
return b.String()
}
// ------------------------------------------------------------------------
// Iterators
type stringIter struct {
*strings.Reader
i int
}
func (it *stringIter) next() tuple {
okv := make(tuple, 3)
ch, n, err := it.ReadRune()
ok := err != io.EOF
okv[0] = ok
if ok {
okv[1] = it.i
okv[2] = ch
}
it.i += n
return okv
}
type mapIter chan [2]value
func (it mapIter) next() tuple {
kv, ok := <-it
return tuple{ok, kv[0], kv[1]}
}