1
0
mirror of https://github.com/golang/go synced 2024-11-20 03:54:40 -07:00
go/src/pkg/runtime/traceback.go

505 lines
16 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
// The code in this file implements stack trace walking for all architectures.
// The most important fact about a given architecture is whether it uses a link register.
// On systems with link registers, the prologue for a non-leaf function stores the
// incoming value of LR at the bottom of the newly allocated stack frame.
// On systems without link registers, the architecture pushes a return PC during
// the call instruction, so the return PC ends up above the stack frame.
// In this file, the return PC is always called LR, no matter how it was found.
//
// To date, the opposite of a link register architecture is an x86 architecture.
// This code may need to change if some other kind of non-link-register
// architecture comes along.
//
// The other important fact is the size of a pointer: on 32-bit systems the LR
// takes up only 4 bytes on the stack, while on 64-bit systems it takes up 8 bytes.
// Typically this is ptrSize.
//
// As an exception, amd64p32 has ptrSize == 4 but the CALL instruction still
// stores an 8-byte return PC onto the stack. To accommodate this, we use regSize
// as the size of the architecture-pushed return PC.
//
// usesLR is defined below. ptrSize and regSize are defined in stubs.go.
const usesLR = GOARCH != "amd64" && GOARCH != "amd64p32" && GOARCH != "386"
// jmpdeferPC is the PC at the beginning of the jmpdefer assembly function.
// The traceback needs to recognize it on link register architectures.
var jmpdeferPC uintptr
func init() {
f := jmpdefer
jmpdeferPC = **(**uintptr)(unsafe.Pointer(&f))
}
// System-specific hook. See traceback_windows.go
var systraceback func(*_func, *stkframe, *g, bool, func(*stkframe, unsafe.Pointer) bool, unsafe.Pointer) (changed, aborted bool)
// Generic traceback. Handles runtime stack prints (pcbuf == nil),
// the runtime.Callers function (pcbuf != nil), as well as the garbage
// collector (callback != nil). A little clunky to merge these, but avoids
// duplicating the code and all its subtlety.
func gentraceback(pc0 uintptr, sp0 uintptr, lr0 uintptr, gp *g, skip int, pcbuf *uintptr, max int, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer, printall bool) int {
g := getg()
gotraceback := gotraceback(nil)
if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp.
if gp.syscallstack != 0 {
pc0 = gp.syscallpc
sp0 = gp.syscallsp
if usesLR {
lr0 = 0
}
} else {
pc0 = gp.sched.pc
sp0 = gp.sched.sp
if usesLR {
lr0 = gp.sched.lr
}
}
}
nprint := 0
var frame stkframe
frame.pc = pc0
frame.sp = sp0
if usesLR {
frame.lr = lr0
}
waspanic := false
wasnewproc := false
printing := pcbuf == nil && callback == nil
panic := gp._panic
_defer := gp._defer
for _defer != nil && uintptr(_defer.argp) == _NoArgs {
_defer = _defer.link
}
for panic != nil && panic._defer == nil {
panic = panic.link
}
// If the PC is zero, it's likely a nil function call.
// Start in the caller's frame.
if frame.pc == 0 {
if usesLR {
frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
frame.lr = 0
} else {
frame.pc = uintptr(*(*uintreg)(unsafe.Pointer(frame.sp)))
frame.sp += regSize
}
}
f := findfunc(frame.pc)
if f == nil {
if callback != nil {
print("runtime: unknown pc ", hex(frame.pc), "\n")
gothrow("unknown pc")
}
return 0
}
frame.fn = f
n := 0
stk := (*stktop)(unsafe.Pointer(gp.stackbase))
for n < max {
// Typically:
// pc is the PC of the running function.
// sp is the stack pointer at that program counter.
// fp is the frame pointer (caller's stack pointer) at that program counter, or nil if unknown.
// stk is the stack containing sp.
// The caller's program counter is lr, unless lr is zero, in which case it is *(uintptr*)sp.
if frame.pc == uintptr(unsafe.Pointer(&lessstack)) {
// Hit top of stack segment. Unwind to next segment.
frame.pc = stk.gobuf.pc
frame.sp = stk.gobuf.sp
frame.lr = 0
frame.fp = 0
if printing && showframe(nil, gp) {
print("----- stack segment boundary -----\n")
}
stk = (*stktop)(unsafe.Pointer(stk.stackbase))
f = findfunc(frame.pc)
if f == nil {
print("runtime: unknown pc ", hex(frame.pc), " after stack split\n")
if callback != nil {
gothrow("unknown pc")
}
}
frame.fn = f
continue
}
f = frame.fn
// Hook for handling Windows exception handlers. See traceback_windows.go.
if systraceback != nil {
changed, aborted := systraceback(f, (*stkframe)(noescape(unsafe.Pointer(&frame))), gp, printing, callback, v)
if aborted {
return n
}
if changed {
continue
}
}
// Found an actual function.
// Derive frame pointer and link register.
if frame.fp == 0 {
frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc))
if !usesLR {
// On x86, call instruction pushes return PC before entering new function.
frame.fp += regSize
}
}
var flr *_func
if topofstack(f) {
frame.lr = 0
flr = nil
} else if usesLR && f.entry == jmpdeferPC {
// jmpdefer modifies SP/LR/PC non-atomically.
// If a profiling interrupt arrives during jmpdefer,
// the stack unwind may see a mismatched register set
// and get confused. Stop if we see PC within jmpdefer
// to avoid that confusion.
// See golang.org/issue/8153.
if callback != nil {
gothrow("traceback_arm: found jmpdefer when tracing with callback")
}
frame.lr = 0
} else {
if usesLR {
if n == 0 && frame.sp < frame.fp || frame.lr == 0 {
frame.lr = *(*uintptr)(unsafe.Pointer(frame.sp))
}
} else {
if frame.lr == 0 {
frame.lr = uintptr(*(*uintreg)(unsafe.Pointer(frame.fp - regSize)))
}
}
flr = findfunc(frame.lr)
if flr == nil {
// This happens if you get a profiling interrupt at just the wrong time.
// In that context it is okay to stop early.
// But if callback is set, we're doing a garbage collection and must
// get everything, so crash loudly.
if callback != nil {
print("runtime: unexpected return pc for ", gofuncname(f), " called from ", hex(frame.lr), "\n")
gothrow("unknown caller pc")
}
}
}
frame.varp = frame.fp
if !usesLR {
// On x86, call instruction pushes return PC before entering new function.
frame.varp -= regSize
}
// Derive size of arguments.
// Most functions have a fixed-size argument block,
// so we can use metadata about the function f.
// Not all, though: there are some variadic functions
// in package runtime and reflect, and for those we use call-specific
// metadata recorded by f's caller.
if callback != nil || printing {
frame.argp = frame.fp
if usesLR {
frame.argp += ptrSize
}
if f.args != _ArgsSizeUnknown {
frame.arglen = uintptr(f.args)
} else if flr == nil {
frame.arglen = 0
} else if frame.lr == uintptr(unsafe.Pointer(&lessstack)) {
frame.arglen = uintptr(stk.argsize)
} else {
i := funcarglen(flr, frame.lr)
if i >= 0 {
frame.arglen = uintptr(i)
} else {
var tmp string
if flr != nil {
tmp = gofuncname(flr)
} else {
tmp = "?"
}
print("runtime: unknown argument frame size for ", gofuncname(f), " called from ", hex(frame.lr), " [", tmp, "]\n")
if callback != nil {
gothrow("invalid stack")
}
frame.arglen = 0
}
}
}
// Determine function SP where deferproc would find its arguments.
var sparg uintptr
if usesLR {
// On link register architectures, that's the standard bottom-of-stack plus 1 word
// for the saved LR. If the previous frame was a direct call to newproc/deferproc,
// however, the SP is three words lower than normal.
// If the function has no frame at all - perhaps it just started, or perhaps
// it is a leaf with no local variables - then we cannot possibly find its
// SP in a defer, and we might confuse its SP for its caller's SP, so
// leave sparg=0 in that case.
if frame.fp != frame.sp {
sparg = frame.sp + regSize
if wasnewproc {
sparg += 3 * regSize
}
}
} else {
// On x86 that's the standard bottom-of-stack, so SP exactly.
// If the previous frame was a direct call to newproc/deferproc, however,
// the SP is two words lower than normal.
sparg = frame.sp
if wasnewproc {
sparg += 2 * ptrSize
}
}
// Determine frame's 'continuation PC', where it can continue.
// Normally this is the return address on the stack, but if sigpanic
// is immediately below this function on the stack, then the frame
// stopped executing due to a trap, and frame.pc is probably not
// a safe point for looking up liveness information. In this panicking case,
// the function either doesn't return at all (if it has no defers or if the
// defers do not recover) or it returns from one of the calls to
// deferproc a second time (if the corresponding deferred func recovers).
// It suffices to assume that the most recent deferproc is the one that
// returns; everything live at earlier deferprocs is still live at that one.
frame.continpc = frame.pc
if waspanic {
if panic != nil && panic._defer.argp == sparg {
frame.continpc = panic._defer.pc
} else if _defer != nil && _defer.argp == sparg {
frame.continpc = _defer.pc
} else {
frame.continpc = 0
}
}
// Unwind our local panic & defer stacks past this frame.
for panic != nil && (panic._defer == nil || panic._defer.argp == sparg || panic._defer.argp == _NoArgs) {
panic = panic.link
}
for _defer != nil && (_defer.argp == sparg || _defer.argp == _NoArgs) {
_defer = _defer.link
}
if skip > 0 {
skip--
goto skipped
}
if pcbuf != nil {
(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = frame.pc
}
if callback != nil {
if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) {
return n
}
}
if printing {
if printall || showframe(f, gp) {
// Print during crash.
// main(0x1, 0x2, 0x3)
// /home/rsc/go/src/runtime/x.go:23 +0xf
//
tracepc := frame.pc // back up to CALL instruction for funcline.
if n > 0 && frame.pc > f.entry && !waspanic {
tracepc--
}
print(gofuncname(f), "(")
argp := (*[100]uintptr)(unsafe.Pointer(frame.argp))
for i := uintptr(0); i < frame.arglen/ptrSize; i++ {
if i >= 10 {
print(", ...")
break
}
if i != 0 {
print(", ")
}
print(hex(argp[i]))
}
print(")\n")
var file string
line := funcline(f, tracepc, &file)
print("\t", file, ":", line)
if frame.pc > f.entry {
print(" +", hex(frame.pc-f.entry))
}
if g.m.throwing > 0 && gp == g.m.curg || gotraceback >= 2 {
print(" fp=", hex(frame.fp), " sp=", hex(frame.sp))
}
print("\n")
nprint++
}
}
n++
skipped:
waspanic = f.entry == uintptr(unsafe.Pointer(&sigpanic))
wasnewproc = f.entry == uintptr(unsafe.Pointer(&newproc)) || f.entry == uintptr(unsafe.Pointer(&deferproc))
// Do not unwind past the bottom of the stack.
if flr == nil {
break
}
// Unwind to next frame.
frame.fn = flr
frame.pc = frame.lr
frame.lr = 0
frame.sp = frame.fp
frame.fp = 0
// On link register architectures, sighandler saves the LR on stack
// before faking a call to sigpanic.
if usesLR && waspanic {
x := *(*uintptr)(unsafe.Pointer(frame.sp))
frame.sp += ptrSize
f = findfunc(frame.pc)
frame.fn = f
if f == nil {
frame.pc = x
} else if f.frame == 0 {
frame.lr = x
}
}
}
if pcbuf == nil && callback == nil {
n = nprint
}
// If callback != nil, we're being called to gather stack information during
// garbage collection or stack growth. In that context, require that we used
// up the entire defer stack. If not, then there is a bug somewhere and the
// garbage collection or stack growth may not have seen the correct picture
// of the stack. Crash now instead of silently executing the garbage collection
// or stack copy incorrectly and setting up for a mysterious crash later.
//
// Note that panic != nil is okay here: there can be leftover panics,
// because the defers on the panic stack do not nest in frame order as
// they do on the defer stack. If you have:
//
// frame 1 defers d1
// frame 2 defers d2
// frame 3 defers d3
// frame 4 panics
// frame 4's panic starts running defers
// frame 5, running d3, defers d4
// frame 5 panics
// frame 5's panic starts running defers
// frame 6, running d4, garbage collects
// frame 6, running d2, garbage collects
//
// During the execution of d4, the panic stack is d4 -> d3, which
// is nested properly, and we'll treat frame 3 as resumable, because we
// can find d3. (And in fact frame 3 is resumable. If d4 recovers
// and frame 5 continues running, d3, d3 can recover and we'll
// resume execution in (returning from) frame 3.)
//
// During the execution of d2, however, the panic stack is d2 -> d3,
// which is inverted. The scan will match d2 to frame 2 but having
// d2 on the stack until then means it will not match d3 to frame 3.
// This is okay: if we're running d2, then all the defers after d2 have
// completed and their corresponding frames are dead. Not finding d3
// for frame 3 means we'll set frame 3's continpc == 0, which is correct
// (frame 3 is dead). At the end of the walk the panic stack can thus
// contain defers (d3 in this case) for dead frames. The inversion here
// always indicates a dead frame, and the effect of the inversion on the
// scan is to hide those dead frames, so the scan is still okay:
// what's left on the panic stack are exactly (and only) the dead frames.
//
// We require callback != nil here because only when callback != nil
// do we know that gentraceback is being called in a "must be correct"
// context as opposed to a "best effort" context. The tracebacks with
// callbacks only happen when everything is stopped nicely.
// At other times, such as when gathering a stack for a profiling signal
// or when printing a traceback during a crash, everything may not be
// stopped nicely, and the stack walk may not be able to complete.
// It's okay in those situations not to use up the entire defer stack:
// incomplete information then is still better than nothing.
if callback != nil && n < max && _defer != nil {
if _defer != nil {
print("runtime: g", gp.goid, ": leftover defer argp=", hex(_defer.argp), " pc=", hex(_defer.pc), "\n")
}
if panic != nil {
print("runtime: g", gp.goid, ": leftover panic argp=", hex(panic._defer.argp), " pc=", hex(panic._defer.pc), "\n")
}
for _defer = gp._defer; _defer != nil; _defer = _defer.link {
print("\tdefer ", _defer, " argp=", hex(_defer.argp), " pc=", hex(_defer.pc), "\n")
}
for panic = gp._panic; panic != nil; panic = panic.link {
print("\tpanic ", panic, " defer ", panic._defer)
if panic._defer != nil {
print(" argp=", hex(panic._defer.argp), " pc=", hex(panic._defer.pc))
}
print("\n")
}
gothrow("traceback has leftover defers or panics")
}
return n
}
func showframe(*_func, *g) bool
func printcreatedby(gp *g) {
// Show what created goroutine, except main goroutine (goid 1).
pc := gp.gopc
f := findfunc(pc)
if f != nil && showframe(f, gp) && gp.goid != 1 {
print("created by ", gofuncname(f), "\n")
tracepc := pc // back up to CALL instruction for funcline.
if pc > f.entry {
tracepc -= _PCQuantum
}
var file string
line := funcline(f, tracepc, &file)
print("\t", file, ":", line)
if pc > f.entry {
print(" +", hex(pc-f.entry))
}
print("\n")
}
}
func traceback(pc uintptr, sp uintptr, lr uintptr, gp *g) {
var n int
if readgstatus(gp)&^_Gscan == _Gsyscall {
// Override signal registers if blocked in system call.
pc = gp.syscallpc
sp = gp.syscallsp
}
// Print traceback. By default, omits runtime frames.
// If that means we print nothing at all, repeat forcing all frames printed.
n = gentraceback(pc, sp, 0, gp, 0, nil, _TracebackMaxFrames, nil, nil, false)
if n == 0 {
n = gentraceback(pc, sp, 0, gp, 0, nil, _TracebackMaxFrames, nil, nil, true)
}
if n == _TracebackMaxFrames {
print("...additional frames elided...\n")
}
printcreatedby(gp)
}
func callers(skip int, pcbuf *uintptr, m int) int {
sp := getcallersp(unsafe.Pointer(&skip))
pc := uintptr(getcallerpc(unsafe.Pointer(&skip)))
return gentraceback(pc, sp, 0, getg(), skip, pcbuf, m, nil, nil, false)
}
func gcallers(gp *g, skip int, pcbuf *uintptr, m int) int {
return gentraceback(^uintptr(0), ^uintptr(0), 0, gp, skip, pcbuf, m, nil, nil, false)
}