1
0
mirror of https://github.com/golang/go synced 2024-11-19 09:34:52 -07:00
go/src/runtime/panic.go

506 lines
13 KiB
Go
Raw Normal View History

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
var indexError = error(errorString("index out of range"))
func panicindex() {
panic(indexError)
}
var sliceError = error(errorString("slice bounds out of range"))
func panicslice() {
panic(sliceError)
}
var divideError = error(errorString("integer divide by zero"))
func panicdivide() {
panic(divideError)
}
var overflowError = error(errorString("integer overflow"))
func panicoverflow() {
panic(overflowError)
}
var floatError = error(errorString("floating point error"))
func panicfloat() {
panic(floatError)
}
var memoryError = error(errorString("invalid memory address or nil pointer dereference"))
func panicmem() {
panic(memoryError)
}
func throwreturn() {
gothrow("no return at end of a typed function - compiler is broken")
}
func throwinit() {
gothrow("recursive call during initialization - linker skew")
}
// Create a new deferred function fn with siz bytes of arguments.
// The compiler turns a defer statement into a call to this.
//go:nosplit
func deferproc(siz int32, fn *funcval) { // arguments of fn follow fn
// the arguments of fn are in a perilous state. The stack map
// for deferproc does not describe them. So we can't let garbage
// collection or stack copying trigger until we've copied them out
// to somewhere safe. deferproc_m does that. Until deferproc_m,
// we can only call nosplit routines.
argp := uintptr(unsafe.Pointer(&fn))
argp += unsafe.Sizeof(fn)
if GOARCH == "arm" {
argp += ptrSize // skip caller's saved link register
}
mp := acquirem()
mp.scalararg[0] = uintptr(siz)
mp.ptrarg[0] = unsafe.Pointer(fn)
mp.scalararg[1] = argp
mp.scalararg[2] = getcallerpc(unsafe.Pointer(&siz))
if mp.curg != getg() {
// go code on the m stack can't defer
gothrow("defer on m")
}
onM(deferproc_m)
releasem(mp)
// deferproc returns 0 normally.
// a deferred func that stops a panic
// makes the deferproc return 1.
// the code the compiler generates always
// checks the return value and jumps to the
// end of the function if deferproc returns != 0.
return0()
// No code can go here - the C return register has
// been set and must not be clobbered.
}
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
// Small malloc size classes >= 16 are the multiples of 16: 16, 32, 48, 64, 80, 96, 112, 128, 144, ...
// Each P holds a pool for defers with small arg sizes.
// Assign defer allocations to pools by rounding to 16, to match malloc size classes.
const (
deferHeaderSize = unsafe.Sizeof(_defer{})
minDeferAlloc = (deferHeaderSize + 15) &^ 15
minDeferArgs = minDeferAlloc - deferHeaderSize
)
// defer size class for arg size sz
//go:nosplit
func deferclass(siz uintptr) uintptr {
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
if siz <= minDeferArgs {
return 0
}
return (siz - minDeferArgs + 15) / 16
}
// total size of memory block for defer with arg size sz
func totaldefersize(siz uintptr) uintptr {
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
if siz <= minDeferArgs {
return minDeferAlloc
}
return deferHeaderSize + siz
}
// Ensure that defer arg sizes that map to the same defer size class
// also map to the same malloc size class.
func testdefersizes() {
var m [len(p{}.deferpool)]int32
for i := range m {
m[i] = -1
}
for i := uintptr(0); ; i++ {
defersc := deferclass(i)
if defersc >= uintptr(len(m)) {
break
}
siz := goroundupsize(totaldefersize(i))
if m[defersc] < 0 {
m[defersc] = int32(siz)
continue
}
if m[defersc] != int32(siz) {
print("bad defer size class: i=", i, " siz=", siz, " defersc=", defersc, "\n")
gothrow("bad defer size class")
}
}
}
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
// The arguments associated with a deferred call are stored
// immediately after the _defer header in memory.
//go:nosplit
func deferArgs(d *_defer) unsafe.Pointer {
return add(unsafe.Pointer(d), unsafe.Sizeof(*d))
}
var deferType *_type // type of _defer struct
func init() {
var x interface{}
x = (*_defer)(nil)
deferType = (*(**ptrtype)(unsafe.Pointer(&x))).elem
}
// Allocate a Defer, usually using per-P pool.
// Each defer must be released with freedefer.
// Note: runs on M stack
func newdefer(siz int32) *_defer {
var d *_defer
sc := deferclass(uintptr(siz))
mp := acquirem()
if sc < uintptr(len(p{}.deferpool)) {
pp := mp.p
d = pp.deferpool[sc]
if d != nil {
pp.deferpool[sc] = d.link
}
}
if d == nil {
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
// Allocate new defer+args.
total := goroundupsize(totaldefersize(uintptr(siz)))
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
d = (*_defer)(mallocgc(total, deferType, 0))
}
d.siz = siz
gp := mp.curg
d.link = gp._defer
gp._defer = d
releasem(mp)
return d
}
// Free the given defer.
// The defer cannot be used after this call.
//go:nosplit
func freedefer(d *_defer) {
if d._panic != nil {
freedeferpanic()
}
if d.fn != nil {
freedeferfn()
}
sc := deferclass(uintptr(d.siz))
if sc < uintptr(len(p{}.deferpool)) {
mp := acquirem()
pp := mp.p
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
*d = _defer{}
d.link = pp.deferpool[sc]
pp.deferpool[sc] = d
releasem(mp)
}
}
// Separate function so that it can split stack.
// Windows otherwise runs out of stack space.
func freedeferpanic() {
// _panic must be cleared before d is unlinked from gp.
gothrow("freedefer with d._panic != nil")
}
func freedeferfn() {
// fn must be cleared before d is unlinked from gp.
gothrow("freedefer with d.fn != nil")
}
// Run a deferred function if there is one.
// The compiler inserts a call to this at the end of any
// function which calls defer.
// If there is a deferred function, this will call runtime·jmpdefer,
// which will jump to the deferred function such that it appears
// to have been called by the caller of deferreturn at the point
// just before deferreturn was called. The effect is that deferreturn
// is called again and again until there are no more deferred functions.
// Cannot split the stack because we reuse the caller's frame to
// call the deferred function.
// The single argument isn't actually used - it just has its address
// taken so it can be matched against pending defers.
//go:nosplit
func deferreturn(arg0 uintptr) {
gp := getg()
d := gp._defer
if d == nil {
return
}
argp := uintptr(unsafe.Pointer(&arg0))
if d.argp != argp {
return
}
// Moving arguments around.
// Do not allow preemption here, because the garbage collector
// won't know the form of the arguments until the jmpdefer can
// flip the PC over to fn.
mp := acquirem()
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
memmove(unsafe.Pointer(argp), deferArgs(d), uintptr(d.siz))
fn := d.fn
d.fn = nil
gp._defer = d.link
freedefer(d)
releasem(mp)
jmpdefer(fn, argp)
}
// Goexit terminates the goroutine that calls it. No other goroutine is affected.
// Goexit runs all deferred calls before terminating the goroutine. Because Goexit
// is not panic, however, any recover calls in those deferred functions will return nil.
//
// Calling Goexit from the main goroutine terminates that goroutine
// without func main returning. Since func main has not returned,
// the program continues execution of other goroutines.
// If all other goroutines exit, the program crashes.
func Goexit() {
// Run all deferred functions for the current goroutine.
// This code is similar to gopanic, see that implementation
// for detailed comments.
gp := getg()
for {
d := gp._defer
if d == nil {
break
}
if d.started {
if d._panic != nil {
d._panic.aborted = true
d._panic = nil
}
d.fn = nil
gp._defer = d.link
freedefer(d)
continue
}
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
d.started = true
reflectcall(unsafe.Pointer(d.fn), deferArgs(d), uint32(d.siz), uint32(d.siz))
if gp._defer != d {
gothrow("bad defer entry in Goexit")
}
d._panic = nil
d.fn = nil
gp._defer = d.link
freedefer(d)
// Note: we ignore recovers here because Goexit isn't a panic
}
goexit()
}
func canpanic(*g) bool
// Print all currently active panics. Used when crashing.
func printpanics(p *_panic) {
if p.link != nil {
printpanics(p.link)
print("\t")
}
print("panic: ")
printany(p.arg)
if p.recovered {
print(" [recovered]")
}
print("\n")
}
// The implementation of the predeclared function panic.
func gopanic(e interface{}) {
gp := getg()
if gp.m.curg != gp {
gothrow("panic on m stack")
}
// m.softfloat is set during software floating point.
// It increments m.locks to avoid preemption.
// We moved the memory loads out, so there shouldn't be
// any reason for it to panic anymore.
if gp.m.softfloat != 0 {
gp.m.locks--
gp.m.softfloat = 0
gothrow("panic during softfloat")
}
if gp.m.mallocing != 0 {
print("panic: ")
printany(e)
print("\n")
gothrow("panic during malloc")
}
if gp.m.gcing != 0 {
print("panic: ")
printany(e)
print("\n")
gothrow("panic during gc")
}
if gp.m.locks != 0 {
print("panic: ")
printany(e)
print("\n")
gothrow("panic holding locks")
}
var p _panic
p.arg = e
p.link = gp._panic
gp._panic = (*_panic)(noescape(unsafe.Pointer(&p)))
for {
d := gp._defer
if d == nil {
break
}
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
// If defer was started by earlier panic or Goexit (and, since we're back here, that triggered a new panic),
// take defer off list. The earlier panic or Goexit will not continue running.
if d.started {
if d._panic != nil {
d._panic.aborted = true
}
d._panic = nil
d.fn = nil
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
gp._defer = d.link
freedefer(d)
continue
}
// Mark defer as started, but keep on list, so that traceback
// can find and update the defer's argument frame if stack growth
// or a garbage collection hapens before reflectcall starts executing d.fn.
d.started = true
// Record the panic that is running the defer.
// If there is a new panic during the deferred call, that panic
// will find d in the list and will mark d._panic (this panic) aborted.
d._panic = (*_panic)(noescape((unsafe.Pointer)(&p)))
p.argp = unsafe.Pointer(getargp(0))
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
reflectcall(unsafe.Pointer(d.fn), deferArgs(d), uint32(d.siz), uint32(d.siz))
p.argp = nil
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
// reflectcall did not panic. Remove d.
if gp._defer != d {
gothrow("bad defer entry in panic")
}
d._panic = nil
d.fn = nil
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
gp._defer = d.link
// trigger shrinkage to test stack copy. See stack_test.go:TestStackPanic
//GC()
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
pc := d.pc
argp := unsafe.Pointer(d.argp) // must be pointer so it gets adjusted during stack copy
freedefer(d)
if p.recovered {
gp._panic = p.link
// Aborted panics are marked but remain on the g.panic list.
runtime: use traceback to traverse defer structures This makes the GC and the stack copying agree about how to interpret the defer structures. Previously, only the stack copying treated them precisely. This removes an untyped memory allocation and fixes at least three copystack bugs. To make sure the GC can find the deferred argument frame until it has been copied, keep a Defer on the defer list during its execution. In addition to making it possible to remove the untyped memory allocation, keeping the Defer on the list fixes two races between copystack and execution of defers (in both gopanic and Goexit). The problem is that once the defer has been taken off the list, a stack copy that happens before the deferred arguments have been copied back to the stack will not update the arguments correctly. The new tests TestDeferPtrsPanic and TestDeferPtrsGoexit (variations on the existing TestDeferPtrs) pass now but failed before this CL. In addition to those fixes, keeping the Defer on the list helps correct a dangling pointer error during copystack. The traceback routines walk the Defer chain to provide information about where a panic may resume execution. When the executing Defer was not on the Defer chain but instead linked from the Panic chain, the traceback had to walk the Panic chain too. But Panic structs are on the stack and being updated by copystack. Traceback's use of the Panic chain while copystack is updating those structs means that it can follow an updated pointer and find itself reading from the new stack. The new stack is usually all zeros, so it sees an incorrect early end to the chain. The new TestPanicUseStack makes this happen at tip and dies when adjustdefers finds an unexpected argp. The new StackCopyPoison mode causes an earlier bad dereference instead. By keeping the Defer on the list, traceback can avoid walking the Panic chain at all, making it okay for copystack to update the Panics. We'd have the same problem for any Defers on the stack. There was only one: gopanic's dabort. Since we are not taking the executing Defer off the chain, we can use it to do what dabort was doing, and then there are no Defers on the stack ever, so it is okay for traceback to use the Defer chain even while copystack is executing: copystack cannot modify the Defer chain. LGTM=khr R=khr CC=dvyukov, golang-codereviews, iant, rlh https://golang.org/cl/141490043
2014-09-16 08:36:38 -06:00
// Remove them from the list.
for gp._panic != nil && gp._panic.aborted {
gp._panic = gp._panic.link
}
if gp._panic == nil { // must be done with signal
gp.sig = 0
}
// Pass information about recovering frame to recovery.
gp.sigcode0 = uintptr(argp)
gp.sigcode1 = pc
mcall(recovery_m)
gothrow("recovery failed") // mcall should not return
}
}
// ran out of deferred calls - old-school panic now
startpanic()
printpanics(gp._panic)
dopanic(0) // should not return
*(*int)(nil) = 0 // not reached
}
// getargp returns the location where the caller
// writes outgoing function call arguments.
//go:nosplit
func getargp(x int) uintptr {
// x is an argument mainly so that we can return its address.
// However, we need to make the function complex enough
// that it won't be inlined. We always pass x = 0, so this code
// does nothing other than keep the compiler from thinking
// the function is simple enough to inline.
if x > 0 {
return getcallersp(unsafe.Pointer(&x)) * 0
}
return uintptr(noescape(unsafe.Pointer(&x)))
}
// The implementation of the predeclared function recover.
// Cannot split the stack because it needs to reliably
// find the stack segment of its caller.
//
// TODO(rsc): Once we commit to CopyStackAlways,
// this doesn't need to be nosplit.
//go:nosplit
func gorecover(argp uintptr) interface{} {
// Must be in a function running as part of a deferred call during the panic.
// Must be called from the topmost function of the call
// (the function used in the defer statement).
// p.argp is the argument pointer of that topmost deferred function call.
// Compare against argp reported by caller.
// If they match, the caller is the one who can recover.
gp := getg()
p := gp._panic
if p != nil && !p.recovered && argp == uintptr(p.argp) {
p.recovered = true
return p.arg
}
return nil
}
//go:nosplit
func startpanic() {
onM_signalok(startpanic_m)
}
//go:nosplit
func dopanic(unused int) {
gp := getg()
mp := acquirem()
mp.ptrarg[0] = unsafe.Pointer(gp)
mp.scalararg[0] = getcallerpc((unsafe.Pointer)(&unused))
mp.scalararg[1] = getcallersp((unsafe.Pointer)(&unused))
onM_signalok(dopanic_m) // should never return
*(*int)(nil) = 0
}
//go:nosplit
func throw(s *byte) {
gp := getg()
if gp.m.throwing == 0 {
gp.m.throwing = 1
}
startpanic()
print("fatal error: ", gostringnocopy(s), "\n")
dopanic(0)
*(*int)(nil) = 0 // not reached
}
//go:nosplit
func gothrow(s string) {
gp := getg()
if gp.m.throwing == 0 {
gp.m.throwing = 1
}
startpanic()
print("fatal error: ", s, "\n")
dopanic(0)
*(*int)(nil) = 0 // not reached
}