1
0
mirror of https://github.com/golang/go synced 2024-11-19 03:34:41 -07:00
go/ssa/create.go

298 lines
7.7 KiB
Go
Raw Normal View History

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// This file implements the CREATE phase of SSA construction.
// See builder.go for explanation.
import (
"fmt"
"go/ast"
"go/token"
"os"
go.tools/importer: generalize command-line syntax. Motivation: pointer analysis tools (like the oracle) want the user to specify a set of initial packages, like 'go test'. This change enables the user to specify a set of packages on the command line using importer.LoadInitialPackages(args). Each argument is interpreted as either: - a comma-separated list of *.go source files together comprising one non-importable ad-hoc package. e.g. "src/pkg/net/http/triv.go" gives us [main]. - an import path, denoting both the imported package and its non-importable external test package, if any. e.g. "fmt" gives us [fmt, fmt_test]. Current type-checker limitations mean that only the first import path may contribute tests: multiple packages augmented by *_test.go files could create import cycles, which 'go test' avoids by building a separate executable for each one. That approach is less attractive for static analysis. Details: (many files touched, but importer.go is the crux) importer: - PackageInfo.Importable boolean indicates whether package is importable. - un-expose Importer.Packages; expose AllPackages() instead. - CreatePackageFromArgs has become LoadInitialPackages. - imports() moved to util.go, renamed importsOf(). - InitialPackagesUsage usage message exported to clients. - the package name for ad-hoc packages now comes from the 'package' decl, not "main". ssa.Program: - added CreatePackages() method - PackagesByPath un-exposed, renamed 'imported'. - expose AllPackages and ImportedPackage accessors. oracle: - describe: explain and workaround a go/types bug. Misc: - Removed various unnecessary error.Error() calls in Printf args. R=crawshaw CC=golang-dev https://golang.org/cl/13579043
2013-09-06 16:13:57 -06:00
"strings"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/importer"
)
// BuilderMode is a bitmask of options for diagnostics and checking.
type BuilderMode uint
const (
LogPackages BuilderMode = 1 << iota // Dump package inventory to stderr
LogFunctions // Dump function SSA code to stderr
LogSource // Show source locations as SSA builder progresses
SanityCheckFunctions // Perform sanity checking of function bodies
NaiveForm // Build naïve SSA form: don't replace local loads/stores with registers
BuildSerially // Build packages serially, not in parallel.
)
// NewProgram returns a new SSA Program initially containing no
// packages.
//
// fset specifies the mapping from token positions to source location
// that will be used by all ASTs of this program.
//
// mode controls diagnostics and checking during SSA construction.
//
func NewProgram(fset *token.FileSet, mode BuilderMode) *Program {
prog := &Program{
Fset: fset,
go.tools/importer: generalize command-line syntax. Motivation: pointer analysis tools (like the oracle) want the user to specify a set of initial packages, like 'go test'. This change enables the user to specify a set of packages on the command line using importer.LoadInitialPackages(args). Each argument is interpreted as either: - a comma-separated list of *.go source files together comprising one non-importable ad-hoc package. e.g. "src/pkg/net/http/triv.go" gives us [main]. - an import path, denoting both the imported package and its non-importable external test package, if any. e.g. "fmt" gives us [fmt, fmt_test]. Current type-checker limitations mean that only the first import path may contribute tests: multiple packages augmented by *_test.go files could create import cycles, which 'go test' avoids by building a separate executable for each one. That approach is less attractive for static analysis. Details: (many files touched, but importer.go is the crux) importer: - PackageInfo.Importable boolean indicates whether package is importable. - un-expose Importer.Packages; expose AllPackages() instead. - CreatePackageFromArgs has become LoadInitialPackages. - imports() moved to util.go, renamed importsOf(). - InitialPackagesUsage usage message exported to clients. - the package name for ad-hoc packages now comes from the 'package' decl, not "main". ssa.Program: - added CreatePackages() method - PackagesByPath un-exposed, renamed 'imported'. - expose AllPackages and ImportedPackage accessors. oracle: - describe: explain and workaround a go/types bug. Misc: - Removed various unnecessary error.Error() calls in Printf args. R=crawshaw CC=golang-dev https://golang.org/cl/13579043
2013-09-06 16:13:57 -06:00
imported: make(map[string]*Package),
packages: make(map[*types.Package]*Package),
builtins: make(map[*types.Builtin]*Builtin),
go.tools/ssa: (another) major refactoring of method-set logic. We now use LookupFieldOrMethod for all SelectorExprs, and simplify the logic to discriminate the various cases. We inline static calls to promoted/indirected functions, dramatically reducing the number of functions created. More tests are needed, but I'd like to submit this as-is. In this CL, we: - rely less on Id strings. Internally we now use *types.Method (and its components) almost everywhere. - stop thinking of types.Methods as objects. They don't have stable identities. (Hopefully they will become plain-old structs soon.) - eliminate receiver indirection wrappers: indirection and promotion are handled together by makeWrapper. - Handle the interactions of promotion, indirection and abstract methods much more cleanly. - support receiver-bound interface method closures. - break up builder.selectField so we can re-use parts (emitFieldSelection). - add importer.PackageInfo.classifySelector utility. - delete interfaceMethodIndex() - delete namedTypeMethodIndex() - delete isSuperInterface() (replaced by types.IsAssignable) - call memberFromObject on each declared concrete method's *types.Func, not on every Method frem each method set, in the CREATE phase for packages loaded by gcimporter. go/types: - document Func, Signature.Recv() better. - use fmt in {Package,Label}.String - reimplement Func.String to be prettier and to include method receivers. API changes: - Function.method now holds the types.Method (soon to be not-an-object) for synthetic wrappers. - CallCommon.Method now contains an abstract (interface) method object; was an abstract method index. - CallCommon.MethodId() gone. - Program.LookupMethod now takes a *Method not an Id string. R=gri CC=golang-dev https://golang.org/cl/11674043
2013-07-26 09:22:34 -06:00
boundMethodWrappers: make(map[*types.Func]*Function),
ifaceMethodWrappers: make(map[*types.Func]*Function),
mode: mode,
}
// Create Values for built-in functions.
for _, name := range types.Universe.Names() {
if obj, ok := types.Universe.Lookup(name).(*types.Builtin); ok {
prog.builtins[obj] = &Builtin{obj}
}
}
return prog
}
// memberFromObject populates package pkg with a member for the
// typechecker object obj.
//
// For objects from Go source code, syntax is the associated syntax
// tree (for funcs and vars only); it will be used during the build
// phase.
//
func memberFromObject(pkg *Package, obj types.Object, syntax ast.Node) {
name := obj.Name()
switch obj := obj.(type) {
case *types.TypeName:
go.tools/ssa: fix computation of set of types requiring method sets. Motivation: Previously, we assumed that the set of types for which a complete method set (containing all synthesized wrapper functions) is required at runtime was the set of types used as operands to some *ssa.MakeInterface instruction. In fact, this is an underapproximation because types can be derived from other ones via reflection, and some of these may need methods. The reflect.Type API allows *T to be derived from T, and these may have different method sets. Reflection also allows almost any subcomponent of a type to be accessed (with one exception: given T, defined 'type T struct{S}', you can reach S but not struct{S}). As a result, the pointer analysis was unable to generate all necessary constraints before running the solver, causing a crash when reflection derives types whose methods are unavailable. (A similar problem would afflict an ahead-of-time compiler based on ssa. The ssa/interp interpreter was immune only because it does not require all wrapper methods to be created before execution begins.) Description: This change causes the SSA builder to record, for each package, the set of all types with non-empty method sets that are referenced within that package. This set is accessed via Packages.TypesWithMethodSets(). Program.TypesWithMethodSets() returns its union across all packages. The set of references that matter are: - types of operands to some MakeInterface instruction (as before) - types of all exported package members - all subcomponents of the above, recursively. This is a conservative approximation to the set of types whose methods may be called dynamically. We define the owning package of a type as follows: - the owner of a named type is the package in which it is defined; - the owner of a pointer-to-named type is the owner of that named type; - the owner of all other types is nil. A package must include the method sets for all types that it owns, and all subcomponents of that type that are not owned by another package, recursively. Types with an owner appear in exactly one package; types with no owner (such as struct{T}) may appear within multiple packages. (A typical Go compiler would emit multiple copies of these methods as weak symbols; a typical linker would eliminate duplicates.) Also: - go/types/typemap: implement hash function for *Tuple. - pointer: generate nodes/constraints for all of ssa.Program.TypesWithMethodSets(). Add rtti.go regression test. - Add API test of Package.TypesWithMethodSets(). - Set Function.Pkg to nil (again) for wrapper functions, since these may be shared by many packages. - Remove a redundant logging statement. - Document that ssa CREATE phase is in fact sequential. Fixes golang/go#6605 R=gri CC=golang-dev https://golang.org/cl/14920056
2013-10-23 15:07:52 -06:00
pkg.values[obj] = nil // for needMethods
pkg.Members[name] = &Type{
object: obj,
pkg: pkg,
}
case *types.Const:
c := &NamedConst{
object: obj,
Value: NewConst(obj.Val(), obj.Type()),
pkg: pkg,
}
go.tools/ssa: add debug information for all ast.Idents. This CL adds three new functions to determine the SSA Value for a given syntactic var, func or const object: Program.{Const,Func,Var}Value. Since constants and functions are immutable, the first two only need a types.Object; but each distinct reference to a var may return a distinct Value, so the third requires an ast.Ident parameter too. Debug information for local vars is encoded in the instruction stream in the form of DebugRef instructions, which are a no-op but relate their operand to a particular ident in the AST. The beauty of this approach is that it naturally stays consistent during optimisation passes (e.g. lifting) without additional bookkeeping. DebugRef instructions are only generated if the DebugMode builder flag is set; I plan to make the policy more fine- grained (per function). DebugRef instructions are inserted for: - expr(Ident) for rvalue idents - address.store() for idents that update an lvalue - address.address() for idents that take address of lvalue (this new method replaces all uses of lval.(address).addr) - expr() for all constant expressions - local ValueSpecs with implicit zero initialization (no RHS) (this case doesn't call store() or address()) To ensure we don't forget to emit debug info for uses of Idents, we must use the lvalue mechanism consistently. (Previously, many simple cases had effectively inlined these functions.) Similarly setCallFunc no longer inlines expr(Ident). Also: - Program.Value() has been inlined & specialized. - Program.Package() has moved nearer the new lookup functions. - refactoring: funcSyntax has lost paramFields, resultFields; gained funcType, which provides access to both. - add package-level constants to Package.values map. - opt: don't call localValueSpec for constants. (The resulting code is always optimised away.) There are a number of comments asking whether Literals should have positions. Will address in a follow-up. Added tests of all interesting cases. R=gri CC=golang-dev https://golang.org/cl/11259044
2013-07-15 11:56:46 -06:00
pkg.values[obj] = c.Value
pkg.Members[name] = c
case *types.Var:
g := &Global{
Pkg: pkg,
name: name,
object: obj,
typ: types.NewPointer(obj.Type()), // address
pos: obj.Pos(),
}
pkg.values[obj] = g
pkg.Members[name] = g
case *types.Func:
fn := &Function{
name: name,
object: obj,
Signature: obj.Type().(*types.Signature),
syntax: syntax,
pos: obj.Pos(), // (iff syntax)
Pkg: pkg,
Prog: pkg.Prog,
}
if syntax == nil {
fn.Synthetic = "loaded from gc object file"
}
pkg.values[obj] = fn
if fn.Signature.Recv() == nil {
pkg.Members[name] = fn // package-level function
}
default: // (incl. *types.Package)
go.tools/ssa: (another) major refactoring of method-set logic. We now use LookupFieldOrMethod for all SelectorExprs, and simplify the logic to discriminate the various cases. We inline static calls to promoted/indirected functions, dramatically reducing the number of functions created. More tests are needed, but I'd like to submit this as-is. In this CL, we: - rely less on Id strings. Internally we now use *types.Method (and its components) almost everywhere. - stop thinking of types.Methods as objects. They don't have stable identities. (Hopefully they will become plain-old structs soon.) - eliminate receiver indirection wrappers: indirection and promotion are handled together by makeWrapper. - Handle the interactions of promotion, indirection and abstract methods much more cleanly. - support receiver-bound interface method closures. - break up builder.selectField so we can re-use parts (emitFieldSelection). - add importer.PackageInfo.classifySelector utility. - delete interfaceMethodIndex() - delete namedTypeMethodIndex() - delete isSuperInterface() (replaced by types.IsAssignable) - call memberFromObject on each declared concrete method's *types.Func, not on every Method frem each method set, in the CREATE phase for packages loaded by gcimporter. go/types: - document Func, Signature.Recv() better. - use fmt in {Package,Label}.String - reimplement Func.String to be prettier and to include method receivers. API changes: - Function.method now holds the types.Method (soon to be not-an-object) for synthetic wrappers. - CallCommon.Method now contains an abstract (interface) method object; was an abstract method index. - CallCommon.MethodId() gone. - Program.LookupMethod now takes a *Method not an Id string. R=gri CC=golang-dev https://golang.org/cl/11674043
2013-07-26 09:22:34 -06:00
panic("unexpected Object type: " + obj.String())
}
}
// membersFromDecl populates package pkg with members for each
// typechecker object (var, func, const or type) associated with the
// specified decl.
//
func membersFromDecl(pkg *Package, decl ast.Decl) {
switch decl := decl.(type) {
case *ast.GenDecl: // import, const, type or var
switch decl.Tok {
case token.CONST:
for _, spec := range decl.Specs {
for _, id := range spec.(*ast.ValueSpec).Names {
if !isBlankIdent(id) {
memberFromObject(pkg, pkg.objectOf(id), nil)
}
}
}
case token.VAR:
for _, spec := range decl.Specs {
for _, id := range spec.(*ast.ValueSpec).Names {
if !isBlankIdent(id) {
memberFromObject(pkg, pkg.objectOf(id), spec)
}
}
}
case token.TYPE:
for _, spec := range decl.Specs {
id := spec.(*ast.TypeSpec).Name
if !isBlankIdent(id) {
memberFromObject(pkg, pkg.objectOf(id), nil)
}
}
}
case *ast.FuncDecl:
id := decl.Name
if decl.Recv == nil && id.Name == "init" {
return // no object
}
if !isBlankIdent(id) {
memberFromObject(pkg, pkg.objectOf(id), decl)
}
}
}
// CreatePackage constructs and returns an SSA Package from an
// error-free package described by info, and populates its Members
// mapping.
//
go.tools/ssa: implement correct control flow for recovered panic. A function such as this: func one() (x int) { defer func() { recover() }() x = 1 panic("return") } that combines named return parameters (NRPs) with deferred calls that call recover, may return non-zero values despite the fact it doesn't even contain a return statement. (!) This requires a change to the SSA API: all functions' control-flow graphs now have a second entry point, called Recover, which is the block at which control flow resumes after a recovered panic. The Recover block simply loads the NRPs and returns them. As an optimization, most functions don't need a Recover block, so it is omitted. In fact it is only needed for functions that have NRPs and defer a call to another function that _may_ call recover. Dataflow analysis of SSA now requires extra work, since every may-panic instruction has an implicit control-flow edge to the Recover block. The only dataflow analysis so far implemented is SSA renaming, for which we make the following simplifying assumption: the Recover block only loads the NRPs and returns. This means we don't really need to analyze it, we can just skip the "lifting" of such NRPs. We also special-case the Recover block in the dominance computation. Rejected alternative approaches: - Specifying a Recover block for every defer instruction (like a traditional exception handler). This seemed like excessive generality, since Go programs only need the same degenerate form of Recover block. - Adding an instruction to set the Recover block immediately after the named return values are set up, so that dominance can be computed without special-casing. This didn't seem worth the effort. Interpreter: - This CL completely reimplements the panic/recover/ defer logic in the interpreter. It's clearer and simpler and closer to the model in the spec. - Some runtime panic messages have been changed to be closer to gc's, since tests depend on it. - The interpreter now requires that the runtime.runtimeError type be part of the SSA program. This requires that clients import this package prior to invoking the interpreter. This in turn requires (Importer).ImportPackage(path string), which this CL adds. - All $GOROOT/test/recover{,1,2,3}.go tests are now passing. NB, the bug described in coverage.go (defer/recover in a concatenated init function) remains. Will be fixed in a follow-up. Fixes golang/go#6381 R=gri CC=crawshaw, golang-dev https://golang.org/cl/13844043
2013-10-14 13:38:56 -06:00
// Repeated calls with the same info return the same Package.
//
// The real work of building SSA form for each function is not done
// until a subsequent call to Package.Build().
//
func (prog *Program) CreatePackage(info *importer.PackageInfo) *Package {
if info.Err != nil {
panic(fmt.Sprintf("package %s has errors: %s", info, info.Err))
}
if p := prog.packages[info.Pkg]; p != nil {
return p // already loaded
}
p := &Package{
Prog: prog,
Members: make(map[string]Member),
values: make(map[types.Object]Value),
Object: info.Pkg,
info: info, // transient (CREATE and BUILD phases)
}
// Add init() function.
p.init = &Function{
name: "init",
Signature: new(types.Signature),
Synthetic: "package initializer",
Pkg: p,
Prog: prog,
}
p.Members[p.init.name] = p.init
// CREATE phase.
// Allocate all package members: vars, funcs, consts and types.
if len(info.Files) > 0 {
// Go source package.
for _, file := range info.Files {
for _, decl := range file.Decls {
membersFromDecl(p, decl)
}
}
} else {
// GC-compiled binary package.
// No code.
// No position information.
scope := p.Object.Scope()
for _, name := range scope.Names() {
obj := scope.Lookup(name)
go.tools/ssa: (another) major refactoring of method-set logic. We now use LookupFieldOrMethod for all SelectorExprs, and simplify the logic to discriminate the various cases. We inline static calls to promoted/indirected functions, dramatically reducing the number of functions created. More tests are needed, but I'd like to submit this as-is. In this CL, we: - rely less on Id strings. Internally we now use *types.Method (and its components) almost everywhere. - stop thinking of types.Methods as objects. They don't have stable identities. (Hopefully they will become plain-old structs soon.) - eliminate receiver indirection wrappers: indirection and promotion are handled together by makeWrapper. - Handle the interactions of promotion, indirection and abstract methods much more cleanly. - support receiver-bound interface method closures. - break up builder.selectField so we can re-use parts (emitFieldSelection). - add importer.PackageInfo.classifySelector utility. - delete interfaceMethodIndex() - delete namedTypeMethodIndex() - delete isSuperInterface() (replaced by types.IsAssignable) - call memberFromObject on each declared concrete method's *types.Func, not on every Method frem each method set, in the CREATE phase for packages loaded by gcimporter. go/types: - document Func, Signature.Recv() better. - use fmt in {Package,Label}.String - reimplement Func.String to be prettier and to include method receivers. API changes: - Function.method now holds the types.Method (soon to be not-an-object) for synthetic wrappers. - CallCommon.Method now contains an abstract (interface) method object; was an abstract method index. - CallCommon.MethodId() gone. - Program.LookupMethod now takes a *Method not an Id string. R=gri CC=golang-dev https://golang.org/cl/11674043
2013-07-26 09:22:34 -06:00
memberFromObject(p, obj, nil)
if obj, ok := obj.(*types.TypeName); ok {
go.tools/ssa: (another) major refactoring of method-set logic. We now use LookupFieldOrMethod for all SelectorExprs, and simplify the logic to discriminate the various cases. We inline static calls to promoted/indirected functions, dramatically reducing the number of functions created. More tests are needed, but I'd like to submit this as-is. In this CL, we: - rely less on Id strings. Internally we now use *types.Method (and its components) almost everywhere. - stop thinking of types.Methods as objects. They don't have stable identities. (Hopefully they will become plain-old structs soon.) - eliminate receiver indirection wrappers: indirection and promotion are handled together by makeWrapper. - Handle the interactions of promotion, indirection and abstract methods much more cleanly. - support receiver-bound interface method closures. - break up builder.selectField so we can re-use parts (emitFieldSelection). - add importer.PackageInfo.classifySelector utility. - delete interfaceMethodIndex() - delete namedTypeMethodIndex() - delete isSuperInterface() (replaced by types.IsAssignable) - call memberFromObject on each declared concrete method's *types.Func, not on every Method frem each method set, in the CREATE phase for packages loaded by gcimporter. go/types: - document Func, Signature.Recv() better. - use fmt in {Package,Label}.String - reimplement Func.String to be prettier and to include method receivers. API changes: - Function.method now holds the types.Method (soon to be not-an-object) for synthetic wrappers. - CallCommon.Method now contains an abstract (interface) method object; was an abstract method index. - CallCommon.MethodId() gone. - Program.LookupMethod now takes a *Method not an Id string. R=gri CC=golang-dev https://golang.org/cl/11674043
2013-07-26 09:22:34 -06:00
named := obj.Type().(*types.Named)
for i, n := 0, named.NumMethods(); i < n; i++ {
memberFromObject(p, named.Method(i), nil)
}
}
}
}
// Add initializer guard variable.
initguard := &Global{
Pkg: p,
name: "init$guard",
typ: types.NewPointer(tBool),
}
p.Members[initguard.Name()] = initguard
if prog.mode&LogPackages != 0 {
p.DumpTo(os.Stderr)
}
go.tools/importer: generalize command-line syntax. Motivation: pointer analysis tools (like the oracle) want the user to specify a set of initial packages, like 'go test'. This change enables the user to specify a set of packages on the command line using importer.LoadInitialPackages(args). Each argument is interpreted as either: - a comma-separated list of *.go source files together comprising one non-importable ad-hoc package. e.g. "src/pkg/net/http/triv.go" gives us [main]. - an import path, denoting both the imported package and its non-importable external test package, if any. e.g. "fmt" gives us [fmt, fmt_test]. Current type-checker limitations mean that only the first import path may contribute tests: multiple packages augmented by *_test.go files could create import cycles, which 'go test' avoids by building a separate executable for each one. That approach is less attractive for static analysis. Details: (many files touched, but importer.go is the crux) importer: - PackageInfo.Importable boolean indicates whether package is importable. - un-expose Importer.Packages; expose AllPackages() instead. - CreatePackageFromArgs has become LoadInitialPackages. - imports() moved to util.go, renamed importsOf(). - InitialPackagesUsage usage message exported to clients. - the package name for ad-hoc packages now comes from the 'package' decl, not "main". ssa.Program: - added CreatePackages() method - PackagesByPath un-exposed, renamed 'imported'. - expose AllPackages and ImportedPackage accessors. oracle: - describe: explain and workaround a go/types bug. Misc: - Removed various unnecessary error.Error() calls in Printf args. R=crawshaw CC=golang-dev https://golang.org/cl/13579043
2013-09-06 16:13:57 -06:00
if info.Importable {
prog.imported[info.Pkg.Path()] = p
}
prog.packages[p.Object] = p
if prog.mode&SanityCheckFunctions != 0 {
sanityCheckPackage(p)
}
return p
}
go.tools/importer: generalize command-line syntax. Motivation: pointer analysis tools (like the oracle) want the user to specify a set of initial packages, like 'go test'. This change enables the user to specify a set of packages on the command line using importer.LoadInitialPackages(args). Each argument is interpreted as either: - a comma-separated list of *.go source files together comprising one non-importable ad-hoc package. e.g. "src/pkg/net/http/triv.go" gives us [main]. - an import path, denoting both the imported package and its non-importable external test package, if any. e.g. "fmt" gives us [fmt, fmt_test]. Current type-checker limitations mean that only the first import path may contribute tests: multiple packages augmented by *_test.go files could create import cycles, which 'go test' avoids by building a separate executable for each one. That approach is less attractive for static analysis. Details: (many files touched, but importer.go is the crux) importer: - PackageInfo.Importable boolean indicates whether package is importable. - un-expose Importer.Packages; expose AllPackages() instead. - CreatePackageFromArgs has become LoadInitialPackages. - imports() moved to util.go, renamed importsOf(). - InitialPackagesUsage usage message exported to clients. - the package name for ad-hoc packages now comes from the 'package' decl, not "main". ssa.Program: - added CreatePackages() method - PackagesByPath un-exposed, renamed 'imported'. - expose AllPackages and ImportedPackage accessors. oracle: - describe: explain and workaround a go/types bug. Misc: - Removed various unnecessary error.Error() calls in Printf args. R=crawshaw CC=golang-dev https://golang.org/cl/13579043
2013-09-06 16:13:57 -06:00
// CreatePackages creates SSA Packages for all error-free packages
// loaded by the specified Importer.
//
// If all packages were error-free, it is safe to call
// prog.BuildAll(), and nil is returned. Otherwise an error is
// returned.
//
func (prog *Program) CreatePackages(imp *importer.Importer) error {
var errpkgs []string
for _, info := range imp.AllPackages() {
if info.Err != nil {
errpkgs = append(errpkgs, info.Pkg.Path())
} else {
prog.CreatePackage(info)
}
}
if errpkgs != nil {
return fmt.Errorf("couldn't create these SSA packages due to type errors: %s",
strings.Join(errpkgs, ", "))
}
return nil
}
// AllPackages returns a new slice containing all packages in the
// program prog in unspecified order.
//
func (prog *Program) AllPackages() []*Package {
pkgs := make([]*Package, 0, len(prog.packages))
for _, pkg := range prog.packages {
pkgs = append(pkgs, pkg)
}
return pkgs
}
// ImportedPackage returns the importable SSA Package whose import
// path is path, or nil if no such SSA package has been created.
//
// Not all packages are importable. For example, no import
// declaration can resolve to the x_test package created by 'go test'
// or the ad-hoc main package created 'go build foo.go'.
//
func (prog *Program) ImportedPackage(path string) *Package {
return prog.imported[path]
}